ﻻ يوجد ملخص باللغة العربية
Deep learning for computer vision depends on lossy image compression: it reduces the storage required for training and test data and lowers transfer costs in deployment. Mainstream datasets and imaging pipelines all rely on standard JPEG compression. In JPEG, the degree of quantization of frequency coefficients controls the lossiness: an 8 by 8 quantization table (Q-table) decides both the quality of the encoded image and the compression ratio. While a long history of work has sought better Q-tables, existing work either seeks to minimize image distortion or to optimize for models of the human visual system. This work asks whether JPEG Q-tables exist that are better for specific vision networks and can offer better quality--size trade-offs than ones designed for human perception or minimal distortion. We reconstruct an ImageNet test set with higher resolution to explore the effect of JPEG compression under novel Q-tables. We attempt several approaches to tune a Q-table for a vision task. We find that a simple sorted random sampling method can exceed the performance of the standard JPEG Q-table. We also use hyper-parameter tuning techniques including bounded random search, Bayesian optimization, and composite heuristic optimization methods. The new Q-tables we obtained can improve the compression rate by 10% to 200% when the accuracy is fixed, or improve accuracy up to $2%$ at the same compression rate.
JPEG is one of the most widely used image formats, but in some ways remains surprisingly unoptimized, perhaps because some natural optimizations would go outside the standard that defines JPEG. We show how to improve JPEG compression in a standard-co
This paper presents new designs of graph convolutional neural networks (GCNs) on 3D meshes for 3D object segmentation and classification. We use the faces of the mesh as basic processing units and represent a 3D mesh as a graph where each node corres
Although deep neural networks are highly effective, their high computational and memory costs severely challenge their applications on portable devices. As a consequence, low-bit quantization, which converts a full-precision neural network into a low
Deep neural networks (DNNs) have achieved great success in a wide range of computer vision areas, but the applications to mobile devices is limited due to their high storage and computational cost. Much efforts have been devoted to compress DNNs. In
We investigate the compression of deep neural networks by quantizing their weights and activations into multiple binary bases, known as multi-bit networks (MBNs), which accelerate the inference and reduce the storage for the deployment on low-resourc