ترغب بنشر مسار تعليمي؟ اضغط هنا

Cluster Regularized Quantization for Deep Networks Compression

61   0   0.0 ( 0 )
 نشر من قبل Yiming Hu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural networks (DNNs) have achieved great success in a wide range of computer vision areas, but the applications to mobile devices is limited due to their high storage and computational cost. Much efforts have been devoted to compress DNNs. In this paper, we propose a simple yet effective method for deep networks compression, named Cluster Regularized Quantization (CRQ), which can reduce the presentation precision of a full-precision model to ternary values without significant accuracy drop. In particular, the proposed method aims at reducing the quantization error by introducing a cluster regularization term, which is imposed on the full-precision weights to enable them naturally concentrate around the target values. Through explicitly regularizing the weights during the re-training stage, the full-precision model can achieve the smooth transition to the low-bit one. Comprehensive experiments on benchmark datasets demonstrate the effectiveness of the proposed method.



قيم البحث

اقرأ أيضاً

In this paper, we compress convolutional neural network (CNN) weights post-training via transform quantization. Previous CNN quantization techniques tend to ignore the joint statistics of weights and activations, producing sub-optimal CNN performance at a given quantization bit-rate, or consider their joint statistics during training only and do not facilitate efficient compression of already trained CNN models. We optimally transform (decorrelate) and quantize the weights post-training using a rate-distortion framework to improve compression at any given quantization bit-rate. Transform quantization unifies quantization and dimensionality reduction (decorrelation) techniques in a single framework to facilitate low bit-rate compression of CNNs and efficient inference in the transform domain. We first introduce a theory of rate and distortion for CNN quantization, and pose optimum quantization as a rate-distortion optimization problem. We then show that this problem can be solved using optimal bit-depth allocation following decorrelation by the optimal End-to-end Learned Transform (ELT) we derive in this paper. Experiments demonstrate that transform quantization advances the state of the art in CNN compression in both retrained and non-retrained quantization scenarios. In particular, we find that transform quantization with retraining is able to compress CNN models such as AlexNet, ResNet and DenseNet to very low bit-rates (1-2 bits).
Deep neural networks (DNNs) have demonstrated their great potential in recent years, exceeding the per-formance of human experts in a wide range of applications. Due to their large sizes, however, compressiontechniques such as weight quantization and pruning are usually applied before they can be accommodated onthe edge. It is generally believed that quantization leads to performance degradation, and plenty of existingworks have explored quantization strategies aiming at minimum accuracy loss. In this paper, we argue thatquantization, which essentially imposes regularization on weight representations, can sometimes help toimprove accuracy. We conduct comprehensive experiments on three widely used applications: fully con-nected network (FCN) for biomedical image segmentation, convolutional neural network (CNN) for imageclassification on ImageNet, and recurrent neural network (RNN) for automatic speech recognition, and experi-mental results show that quantization can improve the accuracy by 1%, 1.95%, 4.23% on the three applicationsrespectively with 3.5x-6.4x memory reduction.
241 - Cheng Gong , Ye Lu , Kunpeng Xie 2021
Quantization has been proven to be a vital method for improving the inference efficiency of deep neural networks (DNNs). However, it is still challenging to strike a good balance between accuracy and efficiency while quantizing DNN weights or activat ion values from high-precision formats to their quantized counterparts. We propose a new method called elastic significant bit quantization (ESB) that controls the number of significant bits of quantized values to obtain better inference accuracy with fewer resources. We design a unified mathematical formula to constrain the quantized values of the ESB with a flexible number of significant bits. We also introduce a distribution difference aligner (DDA) to quantitatively align the distributions between the full-precision weight or activation values and quantized values. Consequently, ESB is suitable for various bell-shaped distributions of weights and activation of DNNs, thus maintaining a high inference accuracy. Benefitting from fewer significant bits of quantized values, ESB can reduce the multiplication complexity. We implement ESB as an accelerator and quantitatively evaluate its efficiency on FPGAs. Extensive experimental results illustrate that ESB quantization consistently outperforms state-of-the-art methods and achieves average accuracy improvements of 4.78%, 1.92%, and 3.56% over AlexNet, ResNet18, and MobileNetV2, respectively. Furthermore, ESB as an accelerator can achieve 10.95 GOPS peak performance of 1k LUTs without DSPs on the Xilinx ZCU102 FPGA platform. Compared with CPU, GPU, and state-of-the-art accelerators on FPGAs, the ESB accelerator can improve the energy efficiency by up to 65x, 11x, and 26x, respectively.
94 - Jiwei Yang , Xu Shen , Jun Xing 2019
Although deep neural networks are highly effective, their high computational and memory costs severely challenge their applications on portable devices. As a consequence, low-bit quantization, which converts a full-precision neural network into a low -bitwidth integer version, has been an active and promising research topic. Existing methods formulate the low-bit quantization of networks as an approximation or optimization problem. Approximation-based methods confront the gradient mismatch problem, while optimization-based methods are only suitable for quantizing weights and could introduce high computational cost in the training stage. In this paper, we propose a novel perspective of interpreting and implementing neural network quantization by formulating low-bit quantization as a differentiable non-linear function (termed quantization function). The proposed quantization function can be learned in a lossless and end-to-end manner and works for any weights and activations of neural networks in a simple and uniform way. Extensive experiments on image classification and object detection tasks show that our quantization networks outperform the state-of-the-art methods. We believe that the proposed method will shed new insights on the interpretation of neural network quantization. Our code is available at https://github.com/aliyun/alibabacloud-quantization-networks.
Adversarial examples are crafted with imperceptible perturbations with the intent to fool neural networks. Against such attacks, adversarial training and its variants stand as the strongest defense to date. Previous studies have pointed out that robu st models that have undergone adversarial training tend to produce more salient and interpretable Jacobian matrices than their non-robust counterparts. A natural question is whether a model trained with an objective to produce salient Jacobian can result in better robustness. This paper answers this question with affirmative empirical results. We propose Jacobian Adversarially Regularized Networks (JARN) as a method to optimize the saliency of a classifiers Jacobian by adversarially regularizing the models Jacobian to resemble natural training images. Image classifiers trained with JARN show improved robust accuracy compared to standard models on the MNIST, SVHN and CIFAR-10 datasets, uncovering a new angle to boost robustness without using adversarial training examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا