ﻻ يوجد ملخص باللغة العربية
JPEG is one of the most widely used image formats, but in some ways remains surprisingly unoptimized, perhaps because some natural optimizations would go outside the standard that defines JPEG. We show how to improve JPEG compression in a standard-compliant, backward-compatible manner, by finding improved default quantization tables. We describe a simulated annealing technique that has allowed us to find several quantization tables that perform better than the industry standard, in terms of both compressed size and image fidelity. Specifically, we derive tables that reduce the FSIM error by over 10% while improving compression by over 20% at quality level 95 in our tests; we also provide similar results for other quality levels. While we acknowledge our approach can in some images lead to visible artifacts under large magnification, we believe use of these quantization tables, or additional tables that could be found using our methodology, would significantly reduce JPEG file sizes with improved overall image quality.
Deep learning for computer vision depends on lossy image compression: it reduces the storage required for training and test data and lowers transfer costs in deployment. Mainstream datasets and imaging pipelines all rely on standard JPEG compression.
Video-quality measurement plays a critical role in the development of video-processing applications. In this paper, we show how video preprocessing can artificially increase the popular quality metric VMAF and its tuning-resistant version, VMAF NEG.
We propose a new stochastic algorithm (generalized simulated annealing) for computationally finding the global minimum of a given (not necessarily convex) energy/cost function defined in a continuous D-dimensional space. This algorithm recovers, as p
Although significant progress in automatic learning of steganographic cost has been achieved recently, existing methods designed for spatial images are not well applicable to JPEG images which are more common media in daily life. The difficulties of
Detection of inconsistencies of double JPEG artefacts across different image regions is often used to detect local image manipulations, like image splicing, and to localize them. In this paper, we move one step further, proposing an end-to-end system