ﻻ يوجد ملخص باللغة العربية
The first generation of stars is quite unique. The absence of metals likely affects their formation, with current models suggesting a much more top-heavy initial mass fraction than what we observe today, and some of their other properties, such as rotation rates and binarity, are largely unknown or constrained by direct observations. But even non-rotation single stars of a given mass will evolve quite differently due to the absence of the metals: the stars will mostly remain much more compact until their death, with the hydrogen-rich later reaching down ten teems deeper in radius then in modern stars. When they explode as supernovae, the exposure to the supernova neutrino flux is much enhanced, allowing for copious production of lithium. This production will not be constant for all stars but largely vary across the mass range. Such production even more challenges the presence of the Spite Plateau.
Long-lived radioactive nuclei play an important role as nucleo-cosmochronometers and as cosmic tracers of nucleosynthetic source activity. In particular nuclei in the actinide region like thorium, uranium, and plutonium can testify to the enrichment
Supernovae have long been proposed to be efficient dust producers in galaxies. Observations in the mid-infrared indicate that dust forms a few hundred days after the stellar explosion. Yet, the chemical type and the amount of dust produced by superno
Core-collapse supernovae are the first polluters of heavy elements in the galactic history. As such, it is important to study the nuclear compositions of their ejecta, and understand their dependence on the progenitor structure (e.g., mass, compactne
Supernovae explosions of massive stars are nowadays believed to result from a two-step process, with an initial gravitational core collapse followed by an expansion of matter after a bouncing on the core. This scenario meets several difficulties. We
The explosion energy of thermonuclear (Type Ia) supernovae is derived from the difference in nuclear binding energy liberated in the explosive fusion of light fuel nuclei, predominantly carbon and oxygen, into more tightly bound nuclear ash dominated