ﻻ يوجد ملخص باللغة العربية
Supernovae have long been proposed to be efficient dust producers in galaxies. Observations in the mid-infrared indicate that dust forms a few hundred days after the stellar explosion. Yet, the chemical type and the amount of dust produced by supernovae are not well quantified. In this review, we summarise our current knowledge of dust formation derived from observations of supernovae, present the various theoretical models on dust synthesis and their predictions, and discuss these results in the context of the most recent observations of dust in supernova remnants.
The first generation of stars is quite unique. The absence of metals likely affects their formation, with current models suggesting a much more top-heavy initial mass fraction than what we observe today, and some of their other properties, such as ro
Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy
We report the detection of oxygen-rich circumstellar envelopes in stars of the nearby (700 kpc) starburst galaxy IC 10. The star formation history and the chemical environment of this galaxy makes it an ideal target to observe dust production by high
Supernovae (SNe) should both frequently have a binary companion at death and form significant amounts of dust. This implies that any binary companion must lie at the center of an expanding dust cloud and the variable obscuration of the companion as t
We study the formation of molecules and dust clusters in the ejecta of solar metallicity, Type II-P supernovae using a chemical kinetic approach. We follow the evolution of molecules and small dust cluster masses from day 100 to day 1500 after explos