ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar r-process-constrained actinide production in neutrino-driven winds of supernovae

72   0   0.0 ( 0 )
 نشر من قبل S. Goriely
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Long-lived radioactive nuclei play an important role as nucleo-cosmochronometers and as cosmic tracers of nucleosynthetic source activity. In particular nuclei in the actinide region like thorium, uranium, and plutonium can testify to the enrichment of an environment by the still enigmatic astrophysical sources that are responsible for the production of neutron-rich nuclei by the rapid neutron-capture process (r-process). Supernovae and merging neutron-star (NS) or NS-black hole binaries are considered as most likely sources of the r-nuclei. But arguments in favour of one or the other or both are indirect and make use of assumptions; they are based on theoretical models with remaining simplifications and shortcomings. An unambiguous observational determination of a production event is still missing. In order to facilitate searches in this direction, e.g. by looking for radioactive tracers in stellar envelopes, the interstellar medium or terrestrial reservoirs, we provide improved theoretical estimates and corresponding uncertainty ranges for the actinide production ($^{232}$Th, $^{235,236,238}$U, $^{237}$Np, $^{244}$Pu, and $^{247}$Cm) in neutrino-driven winds of core-collapse supernovae. Since state-of-the-art supernova models do not yield r-process viable conditions ---but still lack, for example, the effects of strong magnetic fields--- we base our investigation on a simple analytical, Newtonian, adiabatic and steady-state wind model and consider the superposition of a large number of contributing components, whose nucleosynthesis-relevant parameters (mass weight, entropy, expansion time scale, and neutron excess) are constrained by the assumption that the integrated wind nucleosynthesis closely reproduces the solar system distribution of r-process elements. We also test the influence of uncertain nuclear physics.



قيم البحث

اقرأ أيضاً

Of the variations in the elemental abundance patterns of stars enhanced with $r$-process elements, the variation in the relative actinide-to-lanthanide ratio is among the most significant. We investigate the source of these actinide differences in or der to determine whether these variations are due to natural differences in astrophysical sites, or due to the uncertain nuclear properties that are accessed in $r$-process sites. We find that variations between relative stellar actinide abundances is most likely astrophysical in nature, owing to how neutron-rich the ejecta from an $r$-process event may be. Furthermore, if an $r$-process site is capable of generating variations in the neutron-richness of its ejected material, then only one type of $r$-process site is needed to explain all levels of observed relative actinide enhancements.
The rapid-neutron-capture (r) process is responsible for synthesizing many of the heavy elements observed in both the solar system and Galactic metal-poor halo stars. Simulations of r-process nucleosynthesis can reproduce abundances derived from obse rvations with varying success, but so far fail to account for the observed over-enhancement of actinides, present in about 30% of r-process-enhanced stars. In this work, we investigate actinide production in the dynamical ejecta of a neutron star merger and explore if varying levels of neutron richness can reproduce the actinide boost. We also investigate the sensitivity of actinide production on nuclear physics properties: fission distribution, beta-decay, and mass model. For most cases, the actinides are over-produced in our models if the initial conditions are sufficiently neutron-rich for fission cycling. We find that actinide production can be so robust in the dynamical ejecta that an additional lanthanide-rich, actinide-poor component is necessary in order to match observations of actinide-boost stars. We present a simple actinide-dilution model that folds in estimated contributions from two nucleosynthetic sites within a merger event. Our study suggests that while the dynamical ejecta of a neutron star merger is a likely production site for the formation of actinides, a significant contribution from another site or sites (e.g., the neutron star merger accretion disk wind) is required to explain abundances of r-process-enhanced, metal-poor stars.
The neutrino process ($ u$-process) for the production of 7Li and 11B in core-collapse supernovae (SNe) is extensively investigated. Initial abundances of s-nuclei and other physical conditions are derived from an updated calculation of the SN 1987A progenitor. The nuclear reaction network including neutrino reactions is constructed with the variable order Bader-Deuflhard integration method. We find that yields of 7Li and 11B significantly depend on the stellar metallicity while they are independent of the weak s-process during the stellar evolution. When the metallicity is high, there are more neutron absorbers, i.e., 56Fe, 14N (from initial CNO nuclei), and 54Fe, and the neutron abundance is small during the $ u$-process. Since 7Be is predominantly destroyed via 7Be(n,p)7Li, a change in the neutron abundance results in different 7Be yields. Then, the calculated yield ratio 7Li/11B=0.93 for the solar metallicity is larger than that for the SN 1987A 7Li/11B=0.80 by 16 % in the inverted mass hierarchy case. We analyze contributions of respective reactions as well as abundance evolution, and clarify the $ u$-process of 7Li and 11B.
The astrophysical production site of the heaviest elements in the universe remains a mystery. Incorporating heavy element signatures of metal-poor, $r$-process enhanced stars into theoretical studies of $r$-process production can offer crucial constr aints on the origin of heavy elements. In this study, we introduce and apply the Actinide-Dilution with Matching model to a variety of stellar groups ranging from actinide-deficient to actinide-enhanced to empirically characterize $r$-process ejecta mass as a function of electron fraction. We find that actinide-boost stars do not indicate the need for a unique and separate $r$-process progenitor. Rather, small variations of neutron richness within the same type of $r$-process event can account for all observed levels of actinide enhancements. The very low-$Y_e$, fission-cycling ejecta of an $r$-process event need only constitute 10-30% of the total ejecta mass to accommodate most actinide abundances of metal-poor stars. We find that our empirical $Y_e$ distributions of ejecta are similar to those inferred from studies of GW170817 mass ejecta ratios, which is consistent with neutron-star mergers being a source of the heavy elements in metal-poor, $r$-process enhanced stars.
The composition of the early Solar System can be inferred from meteorites. Many elements heavier than iron were formed by the rapid neutron-capture process (r process), but the astrophysical sources where this occurred remain poorly understood. We de monstrate that the near-identical half-lives ($simeq$ 15.6 Myr) of the radioactive r-process nuclei 129I and 247Cm preserve their ratio, irrespective of the time between production and incorporation into the Solar System. We constrain the last r-process source by comparing the measured meteoritic 129I / 247Cm = 438 $pm$ 184 to nucleosynthesis calculations based on neutron star merger and magneto-rotational supernova simulations. Moderately neutron-rich conditions, often found in merger disk ejecta simulations, are most consistent with the meteoritic value. Uncertain nuclear physics data limit our confidence in this conclusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا