ﻻ يوجد ملخص باللغة العربية
A new protograph-based framework for message passing (MP) decoding of low density parity-check (LDPC) codes with Hamming weight amplifiers (HWAs), which are used e.g. in the NIST post-quantum crypto candidate LEDAcrypt, is proposed. The scheme exploits the correlations in the error patterns introduced by the HWA using a turbo-like decoding approach where messages between the decoders for the outer code given by the HWA and the inner LDPC code are exchanged. Decoding thresholds for the proposed scheme are computed using density evolution (DE) analysis for belief propagation (BP) and ternary message passing (TMP) decoding and compared to existing decoding approaches. The proposed scheme improves upon the basic approach of decoding LDPC code from the amplified error and has a similar performance as decoding the corresponding moderate-density parity-check (MDPC) code but with a significantly lower computational complexity.
This article discusses the decoding of Gabidulin codes and shows how to extend the usual decoder to any supercode of a Gabidulin code at the cost of a significant decrease of the decoding radius. Using this decoder, we provide polynomial time attacks
The recent development of deep learning methods provides a new approach to optimize the belief propagation (BP) decoding of linear codes. However, the limitation of existing works is that the scale of neural networks increases rapidly with the codele
This paper presents a theoretical study of a new type of LDPC codes motivated by practical storage applications. LDPCL codes (suffix L represents locality) are LDPC codes that can be decoded either as usual over the full code block, or locally when a
We consider families of codes obtained by lifting a base code $mathcal{C}$ through operations such as $k$-XOR applied to local views of codewords of $mathcal{C}$, according to a suitable $k$-uniform hypergraph. The $k$-XOR operation yields the direct
We utilize a concatenation scheme to construct new families of quantum error correction codes that include the Bacon-Shor codes. We show that our scheme can lead to asymptotically good quantum codes while Bacon-Shor codes cannot. Further, the concate