ﻻ يوجد ملخص باللغة العربية
This paper presents a theoretical study of a new type of LDPC codes motivated by practical storage applications. LDPCL codes (suffix L represents locality) are LDPC codes that can be decoded either as usual over the full code block, or locally when a smaller sub-block is accessed (to reduce latency). LDPCL codes are designed to maximize the error-correction performance vs. rate in the usual (global) mode, while at the same time providing a certain performance in the local mode. We develop a theoretical framework for the design of LDPCL codes. Our results include a design tool to construct an LDPC code with two data-protection levels: local and global. We derive theoretical results supporting this tool and we show how to achieve capacity with it. A trade-off between the gap to capacity and the number of full-block accesses is studied, and a finite-length analysis of ML decoding is performed to exemplify a trade-off between the locality capability and the full-block error-correcting capability.
Layered decoding is well appreciated in Low-Density Parity-Check (LDPC) decoder implementation since it can achieve effectively high decoding throughput with low computation complexity. This work, for the first time, addresses low complexity column-l
We study spatially coupled LDPC codes that allow access to sub-blocks much smaller than the full code block. Sub-block access is realized by a semi-global decoder that decodes a chosen target sub-block by only accessing the target, plus a prescribed
Non-binary low-density parity-check codes are robust to various channel impairments. However, based on the existing decoding algorithms, the decoder implementations are expensive because of their excessive computational complexity and memory usage. B
In this paper, we propose a non-uniform windowed decoder for multi-dimensional spatially-coupled LDPC (MD-SC-LDPC) codes over the binary erasure channel. An MD-SC-LDPC code is constructed by connecting together several SC-LDPC codes into one larger c
We consider the effect of LLR saturation on belief propagation decoding of low-density parity-check codes. Saturation occurs universally in practice and is known to have a significant effect on error floor performance. Our focus is on threshold analy