ﻻ يوجد ملخص باللغة العربية
The recent development of deep learning methods provides a new approach to optimize the belief propagation (BP) decoding of linear codes. However, the limitation of existing works is that the scale of neural networks increases rapidly with the codelength, thus they can only support short to moderate codelengths. From the point view of practicality, we propose a high-performance neural min-sum (MS) decoding method that makes full use of the lifting structure of protograph low-density parity-check (LDPC) codes. By this means, the size of the parameter array of each layer in the neural decoder only equals the number of edge-types for arbitrary codelengths. In particular, for protograph LDPC codes, the proposed neural MS decoder is constructed in a special way such that identical parameters are shared by a bundle of edges derived from the same edge-type. To reduce the complexity and overcome the vanishing gradient problem in training the proposed neural MS decoder, an iteration-by-iteration (i.e., layer-by-layer in neural networks) greedy training method is proposed. With this, the proposed neural MS decoder tends to be optimized with faster convergence, which is aligned with the early termination mechanism widely used in practice. To further enhance the generalization ability of the proposed neural MS decoder, a codelength/rate compatible training method is proposed, which randomly selects samples from a set of codes lifted from the same base code. As a theoretical performance evaluation tool, a trajectory-based extrinsic information transfer (T-EXIT) chart is developed for various decoders. Both T-EXIT and simulation results show that the optimized MS decoding can provide faster convergence and up to 1dB gain compared with the plain MS decoding and its variants with only slightly increased complexity. In addition, it can even outperform the sum-product algorithm for some short codes.
As a typical example of bandwidth-efficient techniques, bit-interleaved coded modulation with iterative decoding (BICM-ID) provides desirable spectral efficiencies in various wireless communication scenarios. In this paper, we carry out a comprehensi
This work addresses the physical layer channel code design for an uncoordinated, frame- and slot-asynchronous random access protocol. Starting from the observation that collisions between two users yield very specific interference patterns, we define
Spatially coupled codes have been shown to universally achieve the capacity for a large class of channels. Many variants of such codes have been introduced to date. We discuss a further such variant that is particularly simple and is determined by a
Min-Sum decoding is widely used for decoding LDPC codes in many modern digital video broadcasting decoding due to its relative low complexity and robustness against quantization error. However, the suboptimal performance of the Min-Sum affects the in
This paper considers density evolution for lowdensity parity-check (LDPC) and multi-edge type low-density parity-check (MET-LDPC) codes over the binary input additive white Gaussian noise channel. We first analyze three singleparameter Gaussian appro