ترغب بنشر مسار تعليمي؟ اضغط هنا

Strongly coupled coherent phonons in single-layer MoS$_2$

78   0   0.0 ( 0 )
 نشر من قبل Andrea Ferrari
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a transient absorption setup combining broadband detection over the visible-UV range with high temporal resolution ($sim$20fs) which is ideally suited to trigger and detect vibrational coherences in different classes of materials. We generate and detect coherent phonons (CPs) in single layer (1L) MoS$_2$, as a representative semiconducting 1L-transition metal dichalcogenide (TMD), where the confined dynamical interaction between excitons and phonons is unexplored. The coherent oscillatory motion of the out-of-plane $A_{1}$ phonons, triggered by the ultrashort laser pulses, dynamically modulates the excitonic resonances on a timescale of few tens fs. We observe an enhancement by almost two orders of magnitude of the CP amplitude when detected in resonance with the C exciton peak, combined with a resonant enhancement of CP generation efficiency. Ab initio calculations of the change in 1L-MoS$_2$ band structure induced by the $A_{1}$ phonon displacement confirm a strong coupling with the C exciton. The resonant behavior of the CP amplitude follows the same spectral profile of the calculated Raman susceptibility tensor. This demonstrates that CP excitation in 1L-MoS$_2$ can be described as a Raman-like scattering process. These results explain the CP generation process in 1L-TMDs, paving the way for coherent all-optical control of excitons in layered materials in the THz frequency range.



قيم البحث

اقرأ أيضاً

279 - Matteo Calandra 2013
Chemically and mechanically exfoliated MoS$_2$ single-layer samples have substantially different properties. While mechanically exfoliated single-layers are mono-phase (1H polytype with Mo in trigonal prismatic coordination), the chemically exfoliate d samples show coexistence of three different phases, 1H, 1T (Mo in octahedral coordination) and 1T$^{}$ (a distorted $2times 1$ 1T-superstructure). By using first-principles calculations, we investigate the energetics and the dynamical stability of the three phases. We show that the 1H phase is the most stable one, while the metallic 1T phase, strongly unstable, undergoes a phase transition towards a metastable and insulating 1T$^{}$ structure composed of separated zig-zag chains. We calculate electronic structure, phonon dispersion, Raman frequencies and intensities for the 1T$^{}$ structure. We provide a microscopical description of the J$_1$, J$_2$ and J$_3$ Raman features first detected more then $20$ years ago, but unexplained up to now. Finally, we show that H adsorbates, that are naturally present at the end of the chemical exfoliation process, stabilize the 1T$^{prime}$ over the 1H one.
To translate electrical into optical signals one uses the modulation of either the refractive index or the absorbance of a material by an electric field. Contemporary electroabsorption modulators (EAMs) employ the quantum confined Stark effect (QCSE) , the field-induced red-shift and broadening of the strong excitonic absorption resonances characteristic of low-dimensional semiconductor structures. Here we show an unprecedentedly strong transverse electroabsorption (EA) signal in a monolayer of the two-dimensional semiconductor MoS2. The EA spectrum is dominated by an apparent linewidth broadening of around 15% at a modulated voltage of only Vpp = 0.5 V. Contrary to the conventional QCSE, the signal increases linearly with the applied field strength and arises from a linear variation of the distance between the strongly overlapping exciton and trion resonances. The achievable modulation depths exceeding 0.1 dBnm-1 bear the scope for extremely compact, ultrafast, energy-efficient EAMs for integrated photonics, including on-chip optical communication.
Strain engineering has arisen as a powerful technique to tune the electronic and optical properties of two-dimensional semiconductors like molybdenum disulfide (MoS2). Although several theoretical works predicted that biaxial strain would be more eff ective than uniaxial strain to tune the band structure of MoS2, a direct experimental verification is still missing in the literature. Here we implemented a simple experimental setup that allows to apply biaxial strain through the bending of a cruciform polymer substrate. We used the setup to study the effect of biaxial strain on the differential reflectance spectra of 12 single-layer MoS2 flakes finding a redshift of the excitonic features at a rate between -40 meV/% and -110 meV/% of biaxial tension. We also directly compare the effect of biaxial and uniaxial strain on the same single-layer MoS2 finding that the biaxial strain gauge factor is 2.3 times larger than the uniaxial strain one.
72 - Saban M. Hus 2020
Non-volatile resistive switching, also known as memristor effect in two terminal devices, has emerged as one of the most important components in the ongoing development of high-density information storage, brain-inspired computing, and reconfigurable systems. Recently, the unexpected discovery of memristor effect in atomic monolayers of transitional metal dichalcogenide sandwich structures has added a new dimension of interest owing to the prospects of size scaling and the associated benefits. However, the origin of the switching mechanism in atomic sheets remains uncertain. Here, using monolayer MoS$_2$ as a model system, atomistic imaging and spectroscopy reveal that metal substitution into sulfur vacancy results in a non-volatile change in resistance. The experimental observations are corroborated by computational studies of defect structures and electronic states. These remarkable findings provide an atomistic understanding on the non-volatile switching mechanism and open a new direction in precision defect engineering, down to a single defect, for achieving optimum performance metrics including memory density, switching energy, speed, and reliability using atomic nanomaterials.
The electronic structure of epitaxial single-layer MoS$_2$ on Au(111) is investigated by angle-resolved photoemission spectroscopy, scanning tunnelling spectroscopy, and first principles calculations. While the band dispersion of the supported single -layer is close to a free-standing layer in the vicinity of the valence band maximum at $bar{K}$ and the calculated electronic band gap on Au(111) is similar to that calculated for the free-standing layer, significant modifications to the band structure are observed at other points of the two-dimensional Brillouin zone: At $bar{Gamma}$, the valence band maximum has a significantly higher binding energy than in the free MoS$_2$ layer and the expected spin-degeneracy of the uppermost valence band at the $bar{M}$ point cannot be observed. These band structure changes are reproduced by the calculations and can be explained by the detailed interaction of the out-of-plane MoS$_2$ orbitals with the substrate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا