ترغب بنشر مسار تعليمي؟ اضغط هنا

Electroabsorption in MoS$_2$

76   0   0.0 ( 0 )
 نشر من قبل Daniele Vella
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To translate electrical into optical signals one uses the modulation of either the refractive index or the absorbance of a material by an electric field. Contemporary electroabsorption modulators (EAMs) employ the quantum confined Stark effect (QCSE), the field-induced red-shift and broadening of the strong excitonic absorption resonances characteristic of low-dimensional semiconductor structures. Here we show an unprecedentedly strong transverse electroabsorption (EA) signal in a monolayer of the two-dimensional semiconductor MoS2. The EA spectrum is dominated by an apparent linewidth broadening of around 15% at a modulated voltage of only Vpp = 0.5 V. Contrary to the conventional QCSE, the signal increases linearly with the applied field strength and arises from a linear variation of the distance between the strongly overlapping exciton and trion resonances. The achievable modulation depths exceeding 0.1 dBnm-1 bear the scope for extremely compact, ultrafast, energy-efficient EAMs for integrated photonics, including on-chip optical communication.



قيم البحث

اقرأ أيضاً

We discuss here the effect of band nesting and topology on the spectrum of excitons in a single layer of MoS$_2$, a prototype transition metal dichalcogenide material. We solve for the single particle states using the ab initio based tight-binding mo del containing metal $d$ and sulfur $p$ orbitals. The metal orbitals contribution evolving from $K$ to $Gamma$ points results in conduction-valence band nesting and a set of second minima at $Q$ points in the conduction band. There are three $Q$ minima for each $K$ valley. We accurately solve the Bethe-Salpeter equation including both $K$ and $Q$ points and obtain ground and excited exciton states. We determine the effects of the electron-hole single particle energies including band nesting, direct and exchange screened Coulomb electron-hole interactions and resulting topological magnetic moments on the exciton spectrum. The ability to control different contributions combined with accurate calculations of the ground and excited exciton states allows for the determination of the importance of different contributions and a comparison with effective mass and $kcdot p$ massive Dirac fermion models.
We present a transient absorption setup combining broadband detection over the visible-UV range with high temporal resolution ($sim$20fs) which is ideally suited to trigger and detect vibrational coherences in different classes of materials. We gener ate and detect coherent phonons (CPs) in single layer (1L) MoS$_2$, as a representative semiconducting 1L-transition metal dichalcogenide (TMD), where the confined dynamical interaction between excitons and phonons is unexplored. The coherent oscillatory motion of the out-of-plane $A_{1}$ phonons, triggered by the ultrashort laser pulses, dynamically modulates the excitonic resonances on a timescale of few tens fs. We observe an enhancement by almost two orders of magnitude of the CP amplitude when detected in resonance with the C exciton peak, combined with a resonant enhancement of CP generation efficiency. Ab initio calculations of the change in 1L-MoS$_2$ band structure induced by the $A_{1}$ phonon displacement confirm a strong coupling with the C exciton. The resonant behavior of the CP amplitude follows the same spectral profile of the calculated Raman susceptibility tensor. This demonstrates that CP excitation in 1L-MoS$_2$ can be described as a Raman-like scattering process. These results explain the CP generation process in 1L-TMDs, paving the way for coherent all-optical control of excitons in layered materials in the THz frequency range.
A mismatch of atomic registries between single-layer transition metal dichalcogenides (TMDs) in a two dimensional van der Waals heterostructure produces a moire superlattice with a periodic potential, which can be fine-tuned by introducing a twist an gle between the materials. This approach is promising both for controlling the interactions between the TMDs and for engineering their electronic band structures, yet direct observation of the changes to the electronic structure introduced with varying twist angle has so far been missing. Here, we probe heterobilayers comprised of single-layer MoS$_2$ and WS$_2$ with twist angles of $(2.0 pm 0.5)^{circ}$, $(13.0 pm 0.5)^{circ}$, and $(20.0 pm 0.5)^{circ}$ and investigate the differences in their electronic band structure using micro-focused angle-resolved photoemission spectroscopy. We find strong interlayer hybridization between MoS$_2$ and WS$_2$ electronic states at the $bar{mathrm{Gamma}}$-point of the Brillouin zone, leading to a transition from a direct bandgap in the single-layer to an indirect gap in the heterostructure. Replicas of the hybridized states are observed at the centre of twist angle-dependent moire mini Brillouin zones. We confirm that these replica features arise from the inherent moire potential by comparing our experimental observations with density functional theory calculations of the superlattice dispersion. Our direct visualization of these features underscores the potential of using twisted heterobilayer semiconductors to engineer hybrid electronic states and superlattices that alter the electronic and optical properties of 2D heterostructures.
Valley pseudospin in two-dimensional (2D) transition-metal dichalcogenides (TMDs) allows optical control of spin-valley polarization and intervalley quantum coherence. Defect states in TMDs give rise to new exciton features and theoretically exhibit spin-valley polarization; however, experimental achievement of this phenomenon remains challenges. Here, we report unambiguous valley pseudospin of defect-bound localized excitons in CVD-grown monolayer MoS2; enhanced valley Zeeman splitting with an effective g-factor of -6.2 is observed. Our results reveal that all five d-orbitals and the increased effective electron mass contribute to the band shift of defect states, demonstrating a new physics of the magnetic responses of defect-bound localized excitons, strikingly different from that of A excitons. Our work paves the way for the manipulation of the spin-valley degrees of freedom through defects toward valleytronic devices.
It has recently been shown that quantum-confined states can appear in epitaxially grown van der Waals material heterobilayers without a rotational misalignment ($theta=0^circ$), associated with flat bands in the Brillouin zone of the moire pattern fo rmed due to the lattice mismatch of the two layers. Peaks in the local density of states and confinement in a MoS$_2$/WSe$_2$ system was qualitatively described only considering local stacking arrangements, which cause band edge energies to vary spatially. In this work, we report the presence of large in-plane strain variation across the moire unit cell of a $theta=0^circ$ MoS$_2$/WSe$_2$ heterobilayer, and show that inclusion of strain variation and out-of-plane displacement in density functional theory calculations greatly improves their agreement with the experimental data. We further explore the role of twist-angle by showing experimental data for a twisted MoS$_2$/WSe$_2$ heterobilayer structure with twist angle of $theta=15^circ$, that exhibits a moire pattern but no confinement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا