ترغب بنشر مسار تعليمي؟ اضغط هنا

A theory of deconfined pseudo-criticality

123   0   0.0 ( 0 )
 نشر من قبل Ruochen Ma
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been proposed that the deconfined criticality in $(2+1)d$ -- the quantum phase transition between a Neel anti-ferromagnet and a valence-bond-solid (VBS) -- may actually be pseudo-critical, in the sense that it is a weakly first-order transition with a generically long correlation length. The underlying field theory of the transition would be a slightly complex (non-unitary) fixed point as a result of fixed points annihilation. This proposal was motivated by existing numerical results from large scale Monte-Carlo simulations as well as conformal bootstrap. However, an actual theory of such complex fixed point, incorporating key features of the transition such as the emergent $SO(5)$ symmetry, is so far absent. Here we propose a Wess-Zumino-Witten (WZW) nonlinear sigma model with level $k=1$, defined in $2+epsilon$ dimensions, with target space $S^{3+epsilon}$ and global symmetry $SO(4+epsilon)$. This gives a formal interpolation between the deconfined criticality at $d=3$ and the $SU(2)_1$ WZW theory at $d=2$ describing the spin-$1/2$ Heisenberg chain. The theory can be formally controlled, at least to leading order, in terms of the inverse of the WZW level $1/k$. We show that at leading order, there is a fixed point annihilation at $d^*approx2.77$, with complex fixed points above this dimension including the physical $d=3$ case. The pseudo-critical properties such as correlation length, scaling dimensions and the drifts of scaling dimensions as the system size increases, calculated crudely to leading order, are qualitatively consistent with existing numerics.



قيم البحث

اقرأ أيضاً

The QED$_3$-Gross-Neveu model is a (2+1)-dimensional U(1) gauge theory involving Dirac fermions and a critical real scalar field. This theory has recently been argued to represent a dual description of the deconfined quantum critical point between Ne el and valence bond solid orders in frustrated quantum magnets. We study the critical behavior of the QED$_3$-Gross-Neveu model by means of an epsilon expansion around the upper critical space-time dimension of $D_c^+=4$ up to the three-loop order. Estimates for critical exponents in 2+1 dimensions are obtained by evaluating the different Pade approximants of their series expansion in epsilon. We find that these estimates, within the spread of the Pade approximants, satisfy a nontrivial scaling relation which follows from the emergent SO(5) symmetry implied by the duality conjecture. We also construct explicit evidence for the equivalence between the QED$_3$-Gross-Neveu model and a corresponding critical four-fermion gauge theory that was previously studied within the 1/N expansion in space-time dimensions 2<D<4.
We describe characteristic physical properties of the recently introduced class of deconfined quantum critical points. Using some simple models, we highlight observables which clearly distinguish such critical points from those described by the conve ntional Landau-Ginzburg-Wilson framework: such a distinction can be made quite precisely even though both classes of critical points are strongly coupled, and neither has sharp quasiparticle excitations. We also contrast our classification from proposals by Bernevig et al. (cond-mat/0004291) and Yoshioka et al. (cond-mat/0404427).
92 - Tarun Grover , T. Senthil 2007
We study theoretically the destruction of spin nematic order due to quantum fluctuations in quasi-one dimensional spin-1 magnets. If the nematic ordering is disordered by condensing disclinations then quantum Berry phase effects induce dimerization i n the resulting paramagnet. We develop a theory for a Landau-forbidden second order transition between the spin nematic and dimerized states found in recent numerical calculations. Numerical tests of the theory are suggested.
There is a number of contradictory findings with regard to whether the theory describing easy-plane quantum antiferromagnets undergoes a second-order phase transition. The traditional Landau-Ginzburg-Wilson approach suggests a first-order phase trans ition, as there are two different competing order parameters. On the other hand, it is known that the theory has the property of self-duality which has been connected to the existence of a deconfined quantum critical point. The latter regime suggests that order parameters are not the elementary building blocks of the theory, but rather consist of fractionalized particles that are confined in both phases of the transition and only appear - deconfine - at the critical point. Nevertheless, numerical Monte Carlo simulations disagree with the claim of deconfined quantum criticality in the system, indicating instead a first-order phase transition. Here these contradictions are resolved by demonstrating via a duality transformation that a new critical regime exists analogous to the zero temperature limit of a certain classical statistical mechanics system. Because of this analogy, we dub this critical regime frozen. A renormalization group analysis bolsters this claim, allowing us to go beyond it and align previous numerical predictions of the first-order phase transition with the deconfined criticality in a consistent framework.
We continue recent efforts to discover examples of deconfined quantum criticality in one-dimensional models. In this work we investigate the transition between a $mathbb{Z}_3$ ferromagnet and a phase with valence bond solid (VBS) order in a spin chai n with $mathbb{Z}_3timesmathbb{Z}_3$ global symmetry. We study a model with alternating projective representations on the sites of the two sublattices, allowing the Hamiltonian to connect to an exactly solvable point having VBS order with the character of SU(3)-invariant singlets. Such a model does not admit a Lieb-Schultz-Mattis theorem typical of systems realizing deconfined critical points. Nevertheless, we find evidence for a direct transition from the VBS phase to a $mathbb{Z}_3$ ferromagnet. Finite-entanglement scaling data are consistent with a second-order or weakly first-order transition. We find in our parameter space an integrable lattice model apparently describing the phase transition, with a very long, finite, correlation length of 190878 lattice spacings. Based on exact results for this model, we propose that the transition is extremely weakly first order, and is part of a family of DQCP described by walking of renormalization group flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا