ﻻ يوجد ملخص باللغة العربية
We describe characteristic physical properties of the recently introduced class of deconfined quantum critical points. Using some simple models, we highlight observables which clearly distinguish such critical points from those described by the conventional Landau-Ginzburg-Wilson framework: such a distinction can be made quite precisely even though both classes of critical points are strongly coupled, and neither has sharp quasiparticle excitations. We also contrast our classification from proposals by Bernevig et al. (cond-mat/0004291) and Yoshioka et al. (cond-mat/0404427).
There is a number of contradictory findings with regard to whether the theory describing easy-plane quantum antiferromagnets undergoes a second-order phase transition. The traditional Landau-Ginzburg-Wilson approach suggests a first-order phase trans
It has been proposed that the deconfined criticality in $(2+1)d$ -- the quantum phase transition between a Neel anti-ferromagnet and a valence-bond-solid (VBS) -- may actually be pseudo-critical, in the sense that it is a weakly first-order transitio
We develop a nonequilibrium increment method to compute the Renyi entanglement entropy and investigate its scaling behavior at the deconfined critical (DQC) point via large-scale quantum Monte Carlo simulations. To benchmark the method, we first show
We study scaling behavior of the disorder parameter, defined as the expectation value of a symmetry transformation applied to a finite region, at the deconfined quantum critical point in (2+1)$d$ in the $J$-$Q_3$ model via large-scale quantum Monte C
Motivated by the physics of spin-orbital liquids, we study a model of interacting Dirac fermions on a bilayer honeycomb lattice at half filling, featuring an explicit global SO(3)$times$U(1) symmetry. Using large-scale auxiliary- field quantum Monte