ترغب بنشر مسار تعليمي؟ اضغط هنا

Deconfined criticality from the QED$_3$-Gross-Neveu model at three loops

82   0   0.0 ( 0 )
 نشر من قبل Lukas Janssen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The QED$_3$-Gross-Neveu model is a (2+1)-dimensional U(1) gauge theory involving Dirac fermions and a critical real scalar field. This theory has recently been argued to represent a dual description of the deconfined quantum critical point between Neel and valence bond solid orders in frustrated quantum magnets. We study the critical behavior of the QED$_3$-Gross-Neveu model by means of an epsilon expansion around the upper critical space-time dimension of $D_c^+=4$ up to the three-loop order. Estimates for critical exponents in 2+1 dimensions are obtained by evaluating the different Pade approximants of their series expansion in epsilon. We find that these estimates, within the spread of the Pade approximants, satisfy a nontrivial scaling relation which follows from the emergent SO(5) symmetry implied by the duality conjecture. We also construct explicit evidence for the equivalence between the QED$_3$-Gross-Neveu model and a corresponding critical four-fermion gauge theory that was previously studied within the 1/N expansion in space-time dimensions 2<D<4.



قيم البحث

اقرأ أيضاً

We study the universal critical properties of the QED$_3$-Gross-Neveu-Yukawa model with $N$ flavors of four-component Dirac fermions coupled to a real scalar order parameter at four-loop order in the $epsilon$ expansion below four dimensions. For $N= 1$, the model is conjectured to be infrared dual to the $SU(2)$-symmetric noncompact $mathbb{C}$P$^1$ model, which describes the deconfined quantum critical point of the Neel-valence-bond-solid transition of spin-1/2 quantum antiferromagnets on the two-dimensional square lattice. For $N=2$, the model describes a quantum phase transition between an algebraic spin liquid and a chiral spin liquid in the spin-1/2 kagome antiferromagnet. For general $N$ we determine the order parameter anomalous dimension, the correlation length exponent, the stability critical exponent, as well as the scaling dimensions of $SU(N)$ singlet and adjoint fermion mass bilinears at the critical point. We use Pade approximants to obtain estimates of critical properties in 2+1 dimensions.
Dirac and Weyl fermions appear as quasi-particle excitations in many different condensed-matter systems. They display various quantum transitions which represent unconventional universality classes related to the variants of the Gross-Neveu model. In this work we study the bosonized version of the standard Gross-Neveu model -- the Gross-Neveu-Yukawa theory -- at three-loop order, and compute critical exponents in $4-epsilon$ dimensions for general number of fermion flavors. Our results fully encompass the previously known two-loop calculations, and agree with the known three-loop results in the purely bosonic limit of the theory. We also find the exponents to satisfy the emergent super-scaling relations in the limit of a single-component fermion, order by order up to three loops. Finally, we apply the computed series for the exponents and their Pade approximants to several phase transitions of current interest: metal-insulator transitions of spin-1/2 and spinless fermions on the honeycomb lattice, emergent supersymmetric surface field theory in topological phases, as well as the disorder-induced quantum transition in Weyl semimetals. Comparison with the results of other analytical and numerical methods is discussed.
The coupling between fermionic matter and gauge fields plays a fundamental role in our understanding of nature, while at the same time posing a challenging problem for theoretical modeling. In this situation, controlled information can be gained by c ombining different complementary approaches. Here, we study a confinement transition in a system of $N_f$ flavors of interacting Dirac fermions charged under a U(1) gauge field in 2+1 dimensions. Using Quantum Monte Carlo simulations, we investigate a lattice model that exhibits a continuous transition at zero temperature between a gapless deconfined phase, described by three-dimensional quantum electrodynamics, and a gapped confined phase, in which the system develops valence-bond-solid order. We argue that the quantum critical point is in the universality class of the QED$_3$-Gross-Neveu-XY model. We study this field theory within a $1/N_f$ expansion in fixed dimension as well as a renormalization group analysis in $4-epsilon$ space-time dimensions. The consistency between numerical and analytical results is revealed from large to intermediate flavor number.
The abelian Higgs model is the textbook example for the superconducting transition and the Anderson-Higgs mechanism, and has become pivotal in the description of deconfined quantum criticality. We study the abelian Higgs model with $n$ complex scalar fields at unprecedented four-loop order in the $4-epsilon$ expansion and find that the annihilation of the critical and bicritical points occurs at a critical number of $n_c approx 182.95left(1 - 1.752epsilon + 0.798 epsilon^2 + 0.362epsilon^3right) + mathcal{O}left(epsilon^4right) onumber$. Consequently, below $n_c$, the transition turns from second to first order. Resummation of the series to extract the result in three-dimensions provides strong evidence for a critical $n_c(d=3)$ which is significantly below the leading-order value, but the estimates for $n_c$ are widely spread. Conjecturing the topology of the renormalization group flow between two and four dimensions, we obtain a smooth interpolation function for $n_c(d)$ and find $n_c(3)approx 12.2pm 3.9$ as our best estimate in three dimensions. Finally, we discuss Miransky scaling occurring below $n_c$ and comment on implications for weakly first-order behavior of deconfined quantum transitions. We predict an emergent hierarchy of length scales between deconfined quantum transitions corresponding to different $n$.
122 - Ruochen Ma , Chong Wang 2019
It has been proposed that the deconfined criticality in $(2+1)d$ -- the quantum phase transition between a Neel anti-ferromagnet and a valence-bond-solid (VBS) -- may actually be pseudo-critical, in the sense that it is a weakly first-order transitio n with a generically long correlation length. The underlying field theory of the transition would be a slightly complex (non-unitary) fixed point as a result of fixed points annihilation. This proposal was motivated by existing numerical results from large scale Monte-Carlo simulations as well as conformal bootstrap. However, an actual theory of such complex fixed point, incorporating key features of the transition such as the emergent $SO(5)$ symmetry, is so far absent. Here we propose a Wess-Zumino-Witten (WZW) nonlinear sigma model with level $k=1$, defined in $2+epsilon$ dimensions, with target space $S^{3+epsilon}$ and global symmetry $SO(4+epsilon)$. This gives a formal interpolation between the deconfined criticality at $d=3$ and the $SU(2)_1$ WZW theory at $d=2$ describing the spin-$1/2$ Heisenberg chain. The theory can be formally controlled, at least to leading order, in terms of the inverse of the WZW level $1/k$. We show that at leading order, there is a fixed point annihilation at $d^*approx2.77$, with complex fixed points above this dimension including the physical $d=3$ case. The pseudo-critical properties such as correlation length, scaling dimensions and the drifts of scaling dimensions as the system size increases, calculated crudely to leading order, are qualitatively consistent with existing numerics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا