ﻻ يوجد ملخص باللغة العربية
We establish that an optimistic variant of Q-learning applied to a fixed-horizon episodic Markov decision process with an aggregated state representation incurs regret $tilde{mathcal{O}}(sqrt{H^5 M K} + epsilon HK)$, where $H$ is the horizon, $M$ is the number of aggregate states, $K$ is the number of episodes, and $epsilon$ is the largest difference between any pair of optimal state-action values associated with a common aggregate state. Notably, this regret bound does not depend on the number of states or actions and indicates that asymptotic per-period regret is no greater than $epsilon$, independent of horizon. To our knowledge, this is the first such result that applies to reinforcement learning with nontrivial value function approximation without any restrictions on transition probabilities.
Modern tasks in reinforcement learning have large state and action spaces. To deal with them efficiently, one often uses predefined feature mapping to represent states and actions in a low-dimensional space. In this paper, we study reinforcement lear
We study the problem of adaptive control of a high dimensional linear quadratic (LQ) system. Previous work established the asymptotic convergence to an optimal controller for various adaptive control schemes. More recently, for the average cost LQ pr
Reinforcement learning in cooperative multi-agent settings has recently advanced significantly in its scope, with applications in cooperative estimation for advertising, dynamic treatment regimes, distributed control, and federated learning. In this
We study reinforcement learning (RL) with linear function approximation under the adaptivity constraint. We consider two popular limited adaptivity models: batch learning model and rare policy switch model, and propose two efficient online RL algorit
This work extends the analysis of the theoretical results presented within the paper Is Q-Learning Provably Efficient? by Jin et al. We include a survey of related research to contextualize the need for strengthening the theoretical guarantees relate