ﻻ يوجد ملخص باللغة العربية
The ferromagnetic phase of the cubic antiperovskite Mn$_3$ZnC is suggested from first-principles calculation to be a nodal line Weyl semimetal. Features in the electronic structure that are the hallmark of a nodal line Weyl state, a large density of linear band crossings near the Fermi level, can also be interpreted as signatures of a structural and/or magnetic instability. Indeed, it is known that Mn$_3$ZnC undergoes transitions upon cooling from a paramagnetic to a cubic ferromagnetic state under ambient conditions and then further into a non-collinear ferrimagnetic tetragonal phase at a temperature between 250$,$K and 200$,$K. The existence of Weyl nodes and their destruction via structural and magnetic ordering is likely to be relevant to a range of magnetostructurally coupled materials.
The tetragonal ferrimagnetic Mn$_3$Ga exhibits a wide range of intriguing magnetic properties. Here, we report the emergence of topologically nontrivial nodal lines in the absence of spin orbit coupling (SOC) which are protected by both mirror and $C
Noncollinear antiferromagnets have promising potential to replace ferromagnets in the field of spintronics as high-density devices with ultrafast operation. To take full advantage of noncollinear antiferromagnets in spintronics applications, it is im
In 1929, H. Weyl proposed that the massless solution of Dirac equation represents a pair of new type particles, the so-called Weyl fermions [1]. However the existence of them in particle physics remains elusive for more than eight decades. Recently,
The Weyl antiferromagnet Mn$_3$Sn has recently attracted significant attention as it exhibits various useful functions such as large anomalous Hall effect that are normally absent in antiferromagnets. Here we report the thin film fabrication of the s
A Weyl semimetal possesses spin-polarized band-crossings, called Weyl nodes, connected by topological surface arcs. The low-energy excitations near the crossing points behave the same as massless Weyl fermions, leading to exotic properties like chira