ﻻ يوجد ملخص باللغة العربية
A Weyl semimetal possesses spin-polarized band-crossings, called Weyl nodes, connected by topological surface arcs. The low-energy excitations near the crossing points behave the same as massless Weyl fermions, leading to exotic properties like chiral anomaly. To have the transport properties dominated by Weyl fermions, Weyl nodes need to locate nearly at the chemical potential and enclosed by pairs of individual Fermi surfaces with nonzero Fermi Chern numbers. Combining angle-resolved photoemission spectroscopy and first-principles calculation, here we show that TaP is a Weyl semimetal with only single type of Weyl fermions, topologically distinguished from TaAs where two types of Weyl fermions contribute to the low-energy physical properties. The simple Weyl fermions in TaP are not only of fundamental interests but also of great potential for future applications. Fermi arcs on the Ta-terminated surface are observed, which appear in a different pattern from that on the As-termination in TaAs and NbAs.
In 1929, H. Weyl proposed that the massless solution of Dirac equation represents a pair of new type particles, the so-called Weyl fermions [1]. However the existence of them in particle physics remains elusive for more than eight decades. Recently,
The Weyl semimetal is a new quantum state of topological semimetal, of which topological surface states -- the Fermi arcs exist. In this paper, the Fermi arcs in Weyl semimetals are classified into two classes -- class-1 and class-2. Based on a tight
In condensed matter systems, chiral topological nodes are robust band crossing points in momentum space that carry nonzero Chern numbers. The chirality is manifested by the presence of surface Fermi arcs connecting the projections of nodes with oppos
We report the surface electronic structure of niobium phosphide NbP single crystal on (001) surface by vacuum ultraviolet angle-resolved photoemission spectroscopy. Combining with our first principle calculations, we identify the existence of the Fer
We report angle-resolved photoemission experiments resolving the distinct electronic structure of the inequivalent top and bottom (001) surfaces of WTe2. On both surfaces, we identify a surface state that forms a large Fermi-arc emerging out of the b