ترغب بنشر مسار تعليمي؟ اضغط هنا

Noncollinear Magnetic Modulation of Weyl Nodes in Ferrimagnetic Mn$_3$Ga

114   0   0.0 ( 0 )
 نشر من قبل ChengYi Huang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The tetragonal ferrimagnetic Mn$_3$Ga exhibits a wide range of intriguing magnetic properties. Here, we report the emergence of topologically nontrivial nodal lines in the absence of spin orbit coupling (SOC) which are protected by both mirror and $C_{4z}$ rotational symmetries. In the presence of SOC we demonstrate that the doubly degenerate nontrivial crossing points evolve into $C_{4z}$-protected Weyl nodes with chiral charge of $pm$2. Furthermore, we have considered the experimentally reported noncollinear ferrimagnetic structure, where the magnetic moment of the Mn$_I$ atom (on the Mn-Ga plane) is tilted by an angle $theta$ with respect to the crystallographic $c$ axis. The evolution of the Weyl nodes with $theta$ reveals that the double Weyl nodes split into a pair of charge-1 Weyl nodes whose separation can be tuned by the magnetic orientation in the noncollinear ferrimagnetic structure.



قيم البحث

اقرأ أيضاً

The ferromagnetic phase of the cubic antiperovskite Mn$_3$ZnC is suggested from first-principles calculation to be a nodal line Weyl semimetal. Features in the electronic structure that are the hallmark of a nodal line Weyl state, a large density of linear band crossings near the Fermi level, can also be interpreted as signatures of a structural and/or magnetic instability. Indeed, it is known that Mn$_3$ZnC undergoes transitions upon cooling from a paramagnetic to a cubic ferromagnetic state under ambient conditions and then further into a non-collinear ferrimagnetic tetragonal phase at a temperature between 250$,$K and 200$,$K. The existence of Weyl nodes and their destruction via structural and magnetic ordering is likely to be relevant to a range of magnetostructurally coupled materials.
We report electrical current switching of noncollinear antiferromagnetic (AFM) Mn$_3$GaN/Pt bilayers at room temperature. The Hall resistance of these bilayers can be manipulated by applying a pulse current of $1.5times10^6$~A/cm$^2$, whereas no sign ificant change is observed up to $sim10^8$~A/cm$^2$ in Mn$_3$GaN single films, indicating that the Pt layer plays an important role. In comparison with ferrimagnetic Mn$_3$GaN/Pt bilayers, a lower electrical current switching of noncollinear AFM Mn$_3$GaN is demonstrated, with a critical current density two orders of magnitude smaller. Our results highlight that a combination of a noncollinear AFM antiperovskite nitride and a spin-torque technique is a good platform of AFM spintronics.
We report the magnetic structure of room-temperature-stable, monoclinic Mn$_3$As$_2$ at 3 K and 250 K using neutron powder diffraction measurements. From magnetometry data, the Curie temperature of Mn$_3$As$_2$ was confirmed to be around 270 K. Calor imetry analysis showed the presence of another transition at 225 K. At 270 K, Mn$_3$As$_2$ undergoes a $k = 0$ ferrimagnetic ordering in the magnetic space group $C2/m$ (#12.58) with Mn moments pointing along $b$. Below 225 K, there is a canting of Mn moments in the $ac$ plane which produces a multi-$k$ non-collinear magnetic structure in space group $C2/c$ (#15.85). The components of Mn moments along $b$ follow $k=0$ ordering and the components along $a$ and $c$ have $k = [0 0 frac{1}{2}]$ propagation vector. The change in the magnetic ground state with temperature provides a deeper insight into the factors that govern magnetic ordering in Mn-As compounds.
The static and dynamic magnetic properties of tetragonally distorted Mn--Ga based alloys were investigated. Static properties are determined in magnetic fields up to 6.5~T using SQUID magnetometry. For the pure Mn$_{1.6}$Ga film, the saturation magne tisation is 0.36~MA/m and the coercivity is 0.29~T. Partial substitution of Mn by Co results in Mn$_{2.6}$Co$_{0.3}$Ga$_{1.1}$. The saturation magnetisation of those films drops to 0.2~MA/m and the coercivity is increased to 1~T. Time-resolved magneto-optical Kerr effect (TR-MOKE) is used to probe the high-frequency dynamics of Mn--Ga. The ferromagnetic resonance frequency extrapolated to zero-field is found to be 125~GHz with a Gilbert damping, $alpha$, of 0.019. The anisotropy field is determined from both SQUID and TR-MOKE to be 4.5~T, corresponding to an effective anisotropy density of 0.81~MJ/m$^3$. Given the large anisotropy field of the Mn$_{2.6}$Co$_{0.3}$Ga$_{1.1}$ film, pulsed magnetic fields up to 60~T are used to determine the field strength required to saturate the film in the plane. For this, the extraordinary Hall effect was employed as a probe of the local magnetisation. By integrating the reconstructed in--plane magnetisation curve, the effective anisotropy energy density for Mn$_{2.6}$Co$_{0.3}$Ga$_{1.1}$ is determined to be 1.23~MJ/m$^3$.
Noncollinear antiferromagnets have promising potential to replace ferromagnets in the field of spintronics as high-density devices with ultrafast operation. To take full advantage of noncollinear antiferromagnets in spintronics applications, it is im portant to achieve efficient manipulation of noncollinear antiferromagnetic spin. Here, using the anomalous Hall effect as an electrical signal of the triangular magnetic configuration, spin-orbit torque switching with no external magnetic field is demonstrated in noncollinear antiferromagnetic antiperovskite manganese nitride Mn$_3$GaN at room temperature. The pulse-width dependence and subsequent relaxation of Hall signal behavior indicate that the spin-orbit torque plays a more important role than the thermal contribution due to pulse injection. In addition, multistate memristive switching with respect to pulse current density was observed. The findings advance the effective control of noncollinear antiferromagnetic spin, facilitating the use of such materials in antiferromagnetic spintronics and neuromorphic computing applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا