ﻻ يوجد ملخص باللغة العربية
We investigate the distribution of metals in the cosmological volume at $zsim3$, in particular, provided by massive population III (Pop III) stars using a cosmological $N$-body simulation in which a model of Pop III star formation is implemented. Owing to the simulation, we can choose minihaloes where Pop III star formation occurs at $z>10$ and obtain the spatial distribution of the metals at lower-redshifts. To evaluate the amount of heavy elements provided by Pop III stars, we consider metal yield of pair-instability or core-collapse supernovae (SNe) explosions of massive stars. By comparing our results to the Illustris-1 simulation, we find that heavy elements provided by Pop III stars often dominate those from galaxies in low density regions. The median value of the volume averaged metallicity is $Zsim 10^{-4.5 - -2} Z_{odot}$ at the regions. Spectroscopic observations with the next generation telescopes are expected to detect the metals imprinted on quasar spectra.
We discuss the cosmological significance of the transition from the Pop III to Pop II mode of star formation in the early universe, and when and how it may occur in primordial galaxies. Observations that could detect this transition include those of
We reconsider the model of neutrino production during the bright phase, first suggested in 1977, in the light of modern understanding of the role of Pop III stars and acceleration of particles in supernova shocks. We concentrate on the production of
Metal enrichment by the first-generation (Pop III) stars is the very first step of the matter cycle in the structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by the Pop I
We present results from seven cosmological simulations that have been extended beyond the present era as far as redshift $z=-0.995$ or $tapprox96,{rm Gyr}$, using the Enzo simulation code. We adopt the calibrated star formation and feedback prescript
The part played by stars in the ionization of the intergalactic medium remains an open question. A key issue is the proportion of the stellar ionizing radiation that escapes the galaxies in which it is produced. Spectroscopy of gamma-ray burst afterg