ﻻ يوجد ملخص باللغة العربية
The part played by stars in the ionization of the intergalactic medium remains an open question. A key issue is the proportion of the stellar ionizing radiation that escapes the galaxies in which it is produced. Spectroscopy of gamma-ray burst afterglows can be used to determine the neutral hydrogen column-density in their host galaxies and hence the opacity to extreme ultra-violet radiation along the lines-of-sight to the bursts. Thus, making the reasonable assumption that long-duration GRB locations are representative of the sites of massive stars that dominate EUV production, one can calculate an average escape fraction of ionizing radiation in a way that is independent of galaxy size, luminosity or underlying spectrum. Here we present a sample of NH measures for 138 GRBs in the range 1.6<z<6.7 and use it to establish an average escape fraction at the Lyman limit of <fesc>~0.005, with a 98% confidence upper limit of ~0.015. This analysis suggests that stars provide a small contribution to the ionizing radiation budget of the IGM at z<5, where the bulk of the bursts lie. At higher redshifts, z>5, firm conclusions are limited by the small size of the GRB sample, but any decline in average HI column-density seems to be modest. We also find no indication of a significant correlation of NH with galaxy UV luminosity or host stellar mass, for the subset of events for which these are available. We discuss in some detail a number of selection effects and potential biases. Drawing on a range of evidence we argue that such effects, while not negligible, are unlikely to produce systematic errors of more than a factor ~2, and so would not affect the primary conclusions. Given that many GRB hosts are low metallicity, high specific star-formation rate, dwarf galaxies, these results present a particular problem for the hypothesis that such galaxies dominated the reionization of the universe.
We discuss two important effects for the astrospheres of runaway stars: the propagation of ionizing photons far beyond the astropause, and the rapid evolution of massive stars (and their winds) near the end of their lives. Hot stars emit ionizing pho
We present some results of an on-going project aimed at studying a sample of Galactic HII regions ionized by a single massive star to test the predictions of modern generation stellar atmosphere codes in the H Lyman continuum. The observations collec
We describe a new method for simulating ionizing radiation and supernova feedback in the analogues of low-redshift galactic disks. In this method, which we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing technique to solve th
It has been known for decades that the observed number of baryons in the local universe falls about 30-40% short of the total number of baryons predicted by Big-Bang Nucleosynthesis, as inferred from density fluctuations of the Cosmic Microwave Backg
Using the Cosmic Origins Spectrograph aboard the Hubble Space Telescope, we measured the abundances of six ions (C III, C IV, Si III, Si IV, N V, O VI) in the low-redshift (z < 0.4) intergalactic medium and explored C and Si ionization corrections fr