ترغب بنشر مسار تعليمي؟ اضغط هنا

PrBi: Topology meets quadrupolar degrees of freedom

80   0   0.0 ( 0 )
 نشر من قبل Yongkang Luo Prof.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Novel materials incorporating electronic degrees of freedom other than charge, including spin, orbital or valley textit{et al} have manifested themselves to be of the great interests and applicable potentials. Recently, the multipolar degrees of freedom have attracted remarkable attention in the electronic correlated effects. In this work, we systematically studied the transport, magnetic and thermodynamic properties of the topological semimetal candidate PrBi in the framework of crystalline electric field theory. Our results demonstrate the $Gamma_3$ non-Kramers doublet as the ground state of Pr$^{3+}$ (4$f^2$) ions. This ground state is nonmagnetic but carries a non-zero quadrupolar moment $langlehat{O}_2^0rangle$. A quadrupolar phase transition is inferred below 0.08 K. No obvious quadrupolar Kondo effect can be identified. Ultrahigh-field quantum oscillation measurements confirm PrBi as a semimetal with non-trivial Berry phase and low total carrier density 0.06 /f.u. We discuss the interplay between low carrier density and $4f^2$ quadrupolar moment, and ascribe the weak quadrupolar ordering and Kondo effect to consequences of the low carrier density. PrBi, thus, opens a new window to the physics of topology and strongly correlated effect with quadrupolar degrees of freedom in the low-carrier-density limit, evoking the need for a reexamination of the Nozi`{e}res exhaustion problem in the context of multi-channel Kondo effect.

قيم البحث

اقرأ أيضاً

We investigate the high-energy magnetic excitation spectrum of the high-$T_c$ cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi-2212) using Cu $L_3$ edge resonant inelastic x-ray scattering (RIXS). Broad, dispersive magnetic excitations ar e observed, with a zone boundary energy of $sim$300 meV and a weak dependence on doping. These excitations are strikingly similar to the bosons proposed to explain the high-energy `kink observed in photoemission. A calculation of the spin-response based on the ARPES-derived electronic structure and YRZ-quasi-particles reproduces the key features of the observed magnetic dispersions with no adjustable parameters. These results show that it is possible to reconcile the magnetic and electronic properties of the cuprates within a unified framework.
We report a detailed magnetotransport study on single crystals of PrBi. The presence of $f$-electrons in this material raises the prospect of realizing a strongly correlated version of topological semimetals. PrBi shows a magnetic field induced metal insulator transition below $T sim 20$ K and a very large magnetoresistance ($approx 4.4 times 10^4~$) at low temperatures ($T= 2$ K). We have also probed the Fermi surface topology by de Haas van Alphen (dHvA) and Shubnikov de Haas (SdH) quantum oscillation measurements complimented with density functional theory (DFT) calculations of the band structure and the Fermi surface. Angle dependence of the SdH oscillations have been carried out to probe the possible signature of surface Dirac fermions. We find three frequencies corresponding to one electron ($alpha$) and two hole ($beta$ and $gamma$) pockets in experiments, consistent with DFT calculations. The angular dependence of these frequencies is not consistent with a two dimensional Fermi surface suggesting that the transport is dominated by bulk bands. Although the transport properties of this material originate from the bulk bands, the high mobility and small effective mass are comparable to other compounds in this series proposed as topologically nontrivial.
FeSe${}_{0.45}$Te${}_{0.55}$ (FeSeTe) has recently emerged as a promising candidate to host topological superconductivity, with a Dirac surface state and signatures of Majorana bound states in vortex cores. However, correlations strongly renormalize the bands compared to electronic structure calculations, and there is no evidence for the expected bulk band inversion. We present here a comprehensive angle resolved photoemission (ARPES) study of FeSeTe as function of photon energies ranging from 15 - 100 eV. We find that although the top of bulk valence band shows essentially no $k_z$ dispersion, its normalized intensity exhibits a periodic variation with $k_z$. We show, using ARPES selection rules, that the intensity oscillation is a signature of band inversion indicating a change in the parity going from $Gamma$ to Z. Thus we provide the first direct evidence for a topologically non-trivial bulk band structure that supports protected surface states.
We study the Atiyah-Hirzebruch spectral sequence (AHSS) for equivariant K-theory in the context of band theory. Various notions in the band theory such as irreducible representations at high-symmetric points, the compatibility relation, topological g apless and singular points naturally fits into the AHSS. As an application of the AHSS, we get the complete list of topological invariants for 230 space groups without time-reversal or particle-hole invariance. We find that a lot of torsion topological invariants appear even for symmorphic space groups.
Motivated by the recent progress of high-frequency ultrasonic measurements, we propose a theory of magnetoacoustic resonance as a microscopic probe for quadrupole degrees of freedom hidden in magnetic materials. A local strain driven by an acoustic w ave couples to electronic states of a magnetic ion through various quadrupole-strain couplings, and this provides a periodically time-dependent oscillating field. As a typical two-level system with the quadrupole, we consider a non-Kramers doublet and investigate single- and multiphonon-mediated transition processes on the basis of the Floquet theory. An analytic form of the transition probability is derived within the weak coupling theory, which helps us analyze the magnetoacoustic quadrupole resonance. We apply the theory to realistic non-Kramers doublet systems for the f2 configuration in Oh and D4h symmetries, and discuss how to identify the relevant quadrupole by controlling the quadrupole-strain coupling with an applied magnetic field in ultrasonic measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا