ﻻ يوجد ملخص باللغة العربية
We introduce a new memory architecture, Bayesian Relational Memory (BRM), to improve the generalization ability for semantic visual navigation agents in unseen environments, where an agent is given a semantic target to navigate towards. BRM takes the form of a probabilistic relation graph over semantic entities (e.g., room types), which allows (1) capturing the layout prior from training environments, i.e., prior knowledge, (2) estimating posterior layout at test time, i.e., memory update, and (3) efficient planning for navigation, altogether. We develop a BRM agent consisting of a BRM module for producing sub-goals and a goal-conditioned locomotion module for control. When testing in unseen environments, the BRM agent outperforms baselines that do not explicitly utilize the probabilistic relational memory structure
Recent work on audio-visual navigation assumes a constantly-sounding target and restricts the role of audio to signaling the targets position. We introduce semantic audio-visual navigation, where objects in the environment make sounds consistent with
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments. End-to-end learning-based navigation methods struggle at this task as they are ineffective at explor
What is a good visual representation for autonomous agents? We address this question in the context of semantic visual navigation, which is the problem of a robot finding its way through a complex environment to a target object, e.g. go to the refrig
As a fundamental problem for Artificial Intelligence, multi-agent system (MAS) is making rapid progress, mainly driven by multi-agent reinforcement learning (MARL) techniques. However, previous MARL methods largely focused on grid-world like or game
This paper focuses on visual semantic navigation, the task of producing actions for an active agent to navigate to a specified target object category in an unknown environment. To complete this task, the algorithm should simultaneously locate and nav