ترغب بنشر مسار تعليمي؟ اضغط هنا

Stabilization of small solutions of discrete NLS with potential having two eigenvalues

84   0   0.0 ( 0 )
 نشر من قبل Masaya Maeda
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Masaya Maeda




اسأل ChatGPT حول البحث

We study the long time behavior of small (in $l^2$) solutions of discrete nonlinear Schrodinger equations with potential. In particular, we are interested in the case that the corresponding discrete Schrodinger operator has exactly two eigenvalues. We show that under the nondegeneracy condition of Fermi Golden Rule, all small solutions decompose into a nonlinear bound state and dispersive wave. We further show the instability of excited states and generalized equipartition property.

قيم البحث

اقرأ أيضاً

We consider discrete analogues of two well-known open problems regarding invariant measures for dispersive PDE, namely, the invariance of the Gibbs measure for the continuum (classical) Heisenberg model and the invariance of white noise under focusin g cubic NLS. These continuum models are completely integrable and connected by the Hasimoto transform; correspondingly, we focus our attention on discretizations that are also completely integrable and also connected by a discrete Hasimoto transform. We consider these models on the infinite lattice $mathbb Z$. Concretely, for a completely integrable variant of the classical Heisenberg spin chain model (introduced independently by Haldane, Ishimori, and Sklyanin) we prove the existence and uniqueness of solutions for initial data following a Gibbs law (which we show is unique) and show that the Gibbs measure is preserved under these dynamics. In the setting of the focusing Ablowitz--Ladik system, we prove invariance of a measure that we will show is the appropriate discrete analogue of white noise. We also include a thorough discussion of the Poisson geometry associated to the discrete Hasimoto transform introduced by Ishimori that connects the two models studied in this article.
We consider the problem of the continuation with respect to a small parameter $epsilon$ of spatially localised and time periodic solutions in 1-dimensional dNLS lattices, where $epsilon$ represents the strength of the interaction among the sites on t he lattice. Specifically, we consider different dNLS models and apply a recently developed normal form algorithm in order to investigate the continuation and the linear stability of degenerate localised periodic orbits on lower and full dimensional invariant resonant tori. We recover results already existing in the literature and provide new insightful ones, both for discrete solitons and for invariant subtori.
We consider the focusing energy critical NLS with inverse square potential in dimension $d= 3, 4, 5$ with the details given in $d=3$ and remarks on results in other dimensions. Solutions on the energy surface of the ground state are characterized. We prove that solutions with kinetic energy less than that of the ground state must scatter to zero or belong to the stable/unstable manifolds of the ground state. In the latter case they converge to the ground state exponentially in the energy space as $tto infty$ or $tto -infty$. (In 3-dim without radial assumption, this holds under the compactness assumption of non-scattering solutions on the energy surface.) When the kinetic energy is greater than that of the ground state, we show that all radial $H^1$ solutions blow up in finite time, with the only two exceptions in the case of 5-dim which belong to the stable/unstable manifold of the ground state. The proof relies on the detailed spectral analysis, local invariant manifold theory, and a global Virial analysis.
We consider the Cauchy problem for the nonlinear wave equation $u_{tt} - Delta_x u +q(t, x) u + u^3 = 0$ with smooth potential $q(t, x) geq 0$ having compact support with respect to $x$. The linear equation without the nonlinear term $u^3$ and potent ial periodic in $t$ may have solutions with exponentially increasing as $ t to infty$ norm $H^1({mathbb R}^3_x)$. In [2] it was established that adding the nonlinear term $u^3$ the $H^1({mathbb R}^3_x)$ norm of the solution is polynomially bounded for every choice of $q$. In this paper we show that $H^k({mathbb R}^3_x)$ norm of this global solution is also polynomially bounded. To prove this we apply a different argument based on the analysis of a sequence ${Y_k(ntau_k)}_{n = 0}^{infty}$ with suitably defined energy norm $Y_k(t)$ and $0 < tau_k <1.$
108 - Gui-Qiang Chen 2007
When a plane shock hits a wedge head on, it experiences a reflection-diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time. Experimental, computational, and asymptotic analysis has shown that various patterns of shock reflection may occur, including regular and Mach reflection. However, most of the fundamental issues for shock reflection have not been understood, including the global structure, stability, and transition of the different patterns of shock reflection. Therefore, it is essential to establish the global existence and structural stability of solutions of shock reflection in order to understand fully the phenomena of shock reflection. On the other hand, there has been no rigorous mathematical result on the global existence and structural stability of shock reflection, including the case of potential flow which is widely used in aerodynamics. Such problems involve several challenging difficulties in the analysis of nonlinear partial differential equations such as mixed equations of elliptic-hyperbolic type, free boundary problems, and corner singularity where an elliptic degenerate curve meets a free boundary. In this paper we develop a rigorous mathematical approach to overcome these difficulties involved and establish a global theory of existence and stability for shock reflection by large-angle wedges for potential flow. The techniques and ideas developed here will be useful for other nonlinear problems involving similar difficulties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا