ﻻ يوجد ملخص باللغة العربية
We define salient features as features that are shared by signals that are defined as being equivalent by a system designer. The definition allows the designer to contribute qualitative information. We aim to find salient features that are useful as conditioning for generative networks. We extract salient features by jointly training a set of clones of an encoder network. Each network clone receives as input a different signal from a set of equivalent signals. The objective function encourages the network clones to map their input into a set of features that is identical across the clones. It additionally encourages feature independence and, optionally, reconstruction of a desired target signal by a decoder. As an application, we train a system that extracts a time-sequence of feature vectors of speech and uses it as a conditioning of a WaveNet generative system, facilitating both coding and enhancement.
We propose to implement speech enhancement by the regeneration of clean speech from a salient representation extracted from the noisy signal. The network that extracts salient features is trained using a set of weight-sharing clones of the extractor
Conventional deep neural network (DNN)-based speech enhancement (SE) approaches aim to minimize the mean square error (MSE) between enhanced speech and clean reference. The MSE-optimized model may not directly improve the performance of an automatic
Deep learning-based models have greatly advanced the performance of speech enhancement (SE) systems. However, two problems remain unsolved, which are closely related to model generalizability to noisy conditions: (1) mismatched noisy condition during
Neural network architectures are at the core of powerful automatic speech recognition systems (ASR). However, while recent researches focus on novel model architectures, the acoustic input features remain almost unchanged. Traditional ASR systems rel
In this paper, we propose a novel speech enhancement (SE) method by exploiting the discrete wavelet transform (DWT). This new method reduces the amount of fast time-varying portion, viz. the DWT-wise detail component, in the spectrogram of speech sig