ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a novel speech enhancement (SE) method by exploiting the discrete wavelet transform (DWT). This new method reduces the amount of fast time-varying portion, viz. the DWT-wise detail component, in the spectrogram of speech signals so as to highlight the speech-dominant component and achieves better speech quality. A particularity of this new method is that it is completely unsupervised and requires no prior information about the clean speech and noise in the processed utterance. The presented DWT-based SE method with various scaling factors for the detail part is evaluated with a subset of Aurora-2 database, and the PESQ metric is used to indicate the quality of processed speech signals. The preliminary results show that the processed speech signals reveal a higher PESQ score in comparison with the original counterparts. Furthermore, we show that this method can still enhance the signal by totally discarding the detail part (setting the respective scaling factor to zero), revealing that the spectrogram can be down-sampled and thus compressed without the cost of lowered quality. In addition, we integrate this new method with conventional speech enhancement algorithms, including spectral subtraction, Wiener filtering, and spectral MMSE estimation, and show that the resulting integration behaves better than the respective component method. As a result, this new method is quite effective in improving the speech quality and well additive to the other SE methods.
Speech enhancement algorithms based on deep learning have been improved in terms of speech intelligibility and perceptual quality greatly. Many methods focus on enhancing the amplitude spectrum while reconstructing speech using the mixture phase. Sin
We propose to implement speech enhancement by the regeneration of clean speech from a salient representation extracted from the noisy signal. The network that extracts salient features is trained using a set of weight-sharing clones of the extractor
Conventional deep neural network (DNN)-based speech enhancement (SE) approaches aim to minimize the mean square error (MSE) between enhanced speech and clean reference. The MSE-optimized model may not directly improve the performance of an automatic
Existing speech enhancement methods mainly separate speech from noises at the signal level or in the time-frequency domain. They seldom pay attention to the semantic information of a corrupted signal. In this paper, we aim to bridge this gap by extra
Previous studies have proven that integrating video signals, as a complementary modality, can facilitate improved performance for speech enhancement (SE). However, video clips usually contain large amounts of data and pose a high cost in terms of com