ترغب بنشر مسار تعليمي؟ اضغط هنا

Reinforcement Learning Based Speech Enhancement for Robust Speech Recognition

121   0   0.0 ( 0 )
 نشر من قبل SyuSiang Wang
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Conventional deep neural network (DNN)-based speech enhancement (SE) approaches aim to minimize the mean square error (MSE) between enhanced speech and clean reference. The MSE-optimized model may not directly improve the performance of an automatic speech recognition (ASR) system. If the target is to minimize the recognition error, the recognition results should be used to design the objective function for optimizing the SE model. However, the structure of an ASR system, which consists of multiple units, such as acoustic and language models, is usually complex and not differentiable. In this study, we proposed to adopt the reinforcement learning algorithm to optimize the SE model based on the recognition results. We evaluated the propsoed SE system on the Mandarin Chinese broadcast news corpus (MATBN). Experimental results demonstrate that the proposed method can effectively improve the ASR results with a notable 12.40% and 19.23% error rate reductions for signal to noise ratio at 0 dB and 5 dB conditions, respectively.



قيم البحث

اقرأ أيضاً

Automatic speech recognition in reverberant conditions is a challenging task as the long-term envelopes of the reverberant speech are temporally smeared. In this paper, we propose a neural model for enhancement of sub-band temporal envelopes for dere verberation of speech. The temporal envelopes are derived using the autoregressive modeling framework of frequency domain linear prediction (FDLP). The neural enhancement model proposed in this paper performs an envelop gain based enhancement of temporal envelopes and it consists of a series of convolutional and recurrent neural network layers. The enhanced sub-band envelopes are used to generate features for automatic speech recognition (ASR). The ASR experiments are performed on the REVERB challenge dataset as well as the CHiME-3 dataset. In these experiments, the proposed neural enhancement approach provides significant improvements over a baseline ASR system with beamformed audio (average relative improvements of 21% on the development set and about 11% on the evaluation set in word error rates for REVERB challenge dataset).
Supervised learning for single-channel speech enhancement requires carefully labeled training examples where the noisy mixture is input into the network and the network is trained to produce an output close to the ideal target. To relax the condition s on the training data, we consider the task of training speech enhancement networks in a self-supervised manner. We first use a limited training set of clean speech sounds and learn a latent representation by autoencoding on their magnitude spectrograms. We then autoencode on speech mixtures recorded in noisy environments and train the resulting autoencoder to share a latent representation with the clean examples. We show that using this training schema, we can now map noisy speech to its clean version using a network that is autonomously trainable without requiring labeled training examples or human intervention.
Existing speech enhancement methods mainly separate speech from noises at the signal level or in the time-frequency domain. They seldom pay attention to the semantic information of a corrupted signal. In this paper, we aim to bridge this gap by extra cting phoneme identities to help speech enhancement. Specifically, we propose a phoneme-based distribution regularization (PbDr) for speech enhancement, which incorporates frame-wise phoneme information into speech enhancement network in a conditional manner. As different phonemes always lead to different feature distributions in frequency, we propose to learn a parameter pair, i.e. scale and bias, through a phoneme classification vector to modulate the speech enhancement network. The modulation parameter pair includes not only frame-wise but also frequency-wise conditions, which effectively map features to phoneme-related distributions. In this way, we explicitly regularize speech enhancement features by recognition vectors. Experiments on public datasets demonstrate that the proposed PbDr module can not only boost the perceptual quality for speech enhancement but also the recognition accuracy of an ASR system on the enhanced speech. This PbDr module could be readily incorporated into other speech enhancement networks as well.
353 - Shuiyang Mao , P. C. Ching , 2021
Despite the widespread utilization of deep neural networks (DNNs) for speech emotion recognition (SER), they are severely restricted due to the paucity of labeled data for training. Recently, segment-based approaches for SER have been evolving, which train backbone networks on shorter segments instead of whole utterances, and thus naturally augments training examples without additional resources. However, one core challenge remains for segment-based approaches: most emotional corpora do not provide ground-truth labels at the segment level. To supervisely train a segment-based emotion model on such datasets, the most common way assigns each segment the corresponding utterances emotion label. However, this practice typically introduces noisy (incorrect) labels as emotional information is not uniformly distributed across the whole utterance. On the other hand, DNNs have been shown to easily over-fit a dataset when being trained with noisy labels. To this end, this work proposes a simple and effective deep self-learning (DSL) framework, which comprises a procedure to progressively correct segment-level labels in an iterative learning manner. The DSL method produces dynamically-generated and soft emotion labels, leading to significant performance improvements. Experiments on three well-known emotional corpora demonstrate noticeable gains using the proposed method.
We propose to implement speech enhancement by the regeneration of clean speech from a salient representation extracted from the noisy signal. The network that extracts salient features is trained using a set of weight-sharing clones of the extractor network. The clones receive mel-frequency spectra of different noi
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا