ترغب بنشر مسار تعليمي؟ اضغط هنا

A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics

224   0   0.0 ( 0 )
 نشر من قبل Tobias Fritz
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Tobias Fritz




اسأل ChatGPT حول البحث

We develop Markov categories as a framework for synthetic probability and statistics, following work of Golubtsov as well as Cho and Jacobs. This means that we treat the following concepts in purely abstract categorical terms: conditioning and disintegration; vario

قيم البحث

اقرأ أيضاً

A lattice-theoretic framework is introduced that permits the study of the conditional independence (CI) implication problem relative to the class of discrete probability measures. Semi-lattices are associated with CI statements and a finite, sound an d complete inference system relative to semi-lattice inclusions is presented. This system is shown to be (1) sound and complete for saturated CI statements, (2) complete for general CI statements, and (3) sound and complete for stable CI statements. These results yield a criterion that can be used to falsify instances of the implication problem and several heuristics are derived that approximate this lattice-exclusion criterion in polynomial time. Finally, we provide experimental results that relate our work to results obtained from other existing inference algorithms.
Markov categories are a recent categorical approach to the mathematical foundations of probability and statistics. Here, this approach is advanced by stating and proving equivalent conditions for second-order stochastic dominance, a widely used way o f comparing probability distributions by their spread. Furthermore, we lay foundation for the theory of comparing statistical experiments within Markov categories by stating and proving the classical Blackwell-Sherman-Stein Theorem. Our version not only offers new insight into the proof, but its abstract nature also makes the result more general, automatically specializing to the standard Blackwell-Sherman-Stein Theorem in measure-theoretic probability as well as a Bayesian version that involves prior-dependent garbling. Along the way, we define and characterize representable Markov categories, within which one can talk about Markov kernels to or from spaces of distributions. We do so by exploring the relation between Markov categories and Kleisli categories of probability monads.
Measuring conditional independence is one of the important tasks in statistical inference and is fundamental in causal discovery, feature selection, dimensionality reduction, Bayesian network learning, and others. In this work, we explore the connect ion between conditional independence measures induced by distances on a metric space and reproducing kernels associated with a reproducing kernel Hilbert space (RKHS). For certain distance and kernel pairs, we show the distance-based conditional independence measures to be equivalent to that of kernel-based measures. On the other hand, we also show that some popular---in machine learning---kernel conditional independence measures based on the Hilbert-Schmidt norm of a certain cross-conditional covariance operator, do not have a simple distance representation, except in some limiting cases. This paper, therefore, shows the distance and kernel measures of conditional independence to be not quite equivalent unlike in the case of joint independence as shown by Sejdinovic et al. (2013).
We consider the problem of conditional independence testing of $X$ and $Y$ given $Z$ where $X,Y$ and $Z$ are three real random variables and $Z$ is continuous. We focus on two main cases - when $X$ and $Y$ are both discrete, and when $X$ and $Y$ are both continuous. In view of recent results on conditional independence testing (Shah and Peters, 2018), one cannot hope to design non-trivial tests, which control the type I error for all absolutely continuous conditionally independent distributions, while still ensuring power against interesting alternatives. Consequently, we identify various, natural smoothness assumptions on the conditional distributions of $X,Y|Z=z$ as $z$ varies in the support of $Z$, and study the hardness of conditional independence testing under these smoothness assumptions. We derive matching lower and upper bounds on the critical radius of separation between the null and alternative hypotheses in the total variation metric. The tests we consider are easily implementable and rely on binning the support of the continuous variable $Z$. To complement these results, we provide a new proof of the hardness result of Shah and Peters.
Computation Tree Logic (CTL) is one of the central formalisms in formal verification. As a specification language, it is used to express a property that the system at hand is expected to satisfy. From both the verification and the system design point s of view, some information content of such property might become irrelevant for the system due to various reasons, e.g., it might become obsolete by time, or perhaps infeasible due to practical difficulties. Then, the problem arises on how to subtract such piece of information without altering the relevant system behaviour or violating the existing specifications over a given signature. Moreover, in such a scenario, two crucial notions are informative: the strongest necessary condition (SNC) and the weakest sufficient condition (WSC) of a given property. To address such a scenario in a principled way, we introduce a forgetting-based approach in CTL and show that it can be used to compute SNC and WSC of a property under a given model and over a given signature. We study its theoretical properties and also show that our notion of forgetting satisfies existing essential postulates of knowledge forgetting. Furthermore, we analyse the computational complexity of some basic reasoning tasks for the fragment CTL_AF in particular.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا