ترغب بنشر مسار تعليمي؟ اضغط هنا

On Distance and Kernel Measures of Conditional Independence

67   0   0.0 ( 0 )
 نشر من قبل Tianhong Sheng
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring conditional independence is one of the important tasks in statistical inference and is fundamental in causal discovery, feature selection, dimensionality reduction, Bayesian network learning, and others. In this work, we explore the connection between conditional independence measures induced by distances on a metric space and reproducing kernels associated with a reproducing kernel Hilbert space (RKHS). For certain distance and kernel pairs, we show the distance-based conditional independence measures to be equivalent to that of kernel-based measures. On the other hand, we also show that some popular---in machine learning---kernel conditional independence measures based on the Hilbert-Schmidt norm of a certain cross-conditional covariance operator, do not have a simple distance representation, except in some limiting cases. This paper, therefore, shows the distance and kernel measures of conditional independence to be not quite equivalent unlike in the case of joint independence as shown by Sejdinovic et al. (2013).

قيم البحث

اقرأ أيضاً

We investigate the problem of testing whether $d$ random variables, which may or may not be continuous, are jointly (or mutually) independent. Our method builds on ideas of the two variable Hilbert-Schmidt independence criterion (HSIC) but allows for an arbitrary number of variables. We embed the $d$-dimensional joint distribution and the product of the marginals into a reproducing kernel Hilbert space and define the $d$-variable Hilbert-Schmidt independence criterion (dHSIC) as the squared distance between the embeddings. In the population case, the value of dHSIC is zero if and only if the $d$ variables are jointly independent, as long as the kernel is characteristic. Based on an empirical estimate of dHSIC, we define three different non-parametric hypothesis tests: a permutation test, a bootstrap test and a test based on a Gamma approximation. We prove that the permutation test achieves the significance level and that the bootstrap test achieves pointwise asymptotic significance level as well as pointwise asymptotic consistency (i.e., it is able to detect any type of fixed dependence in the large sample limit). The Gamma approximation does not come with these guarantees; however, it is computationally very fast and for small $d$, it performs well in practice. Finally, we apply the test to a problem in causal discovery.
Dependence measures based on reproducing kernel Hilbert spaces, also known as Hilbert-Schmidt Independence Criterion and denoted HSIC, are widely used to statistically decide whether or not two random vectors are dependent. Recently, non-parametric H SIC-based statistical tests of independence have been performed. However, these tests lead to the question of the choice of the kernels associated to the HSIC. In particular, there is as yet no method to objectively select specific kernels with theoretical guarantees in terms of first and second kind errors. One of the main contributions of this work is to develop a new HSIC-based aggregated procedure which avoids such a kernel choice, and to provide theoretical guarantees for this procedure. To achieve this, we first introduce non-asymptotic single tests based on Gaussian kernels with a given bandwidth, which are of prescribed level $alpha in (0,1)$. From a theoretical point of view, we upper-bound their uniform separation rate of testing over Sobolev and Nikolskii balls. Then, we aggregate several single tests, and obtain similar upper-bounds for the uniform separation rate of the aggregated procedure over the same regularity spaces. Another main contribution is that we provide a lower-bound for the non-asymptotic minimax separation rate of testing over Sobolev balls, and deduce that the aggregated procedure is adaptive in the minimax sense over such regularity spaces. Finally, from a practical point of view, we perform numerical studies in order to assess the efficiency of our aggregated procedure and compare it to existing independence tests in the literature.
This chapter of the forthcoming Handbook of Graphical Models contains an overview of basic theorems and techniques from algebraic geometry and how they can be applied to the study of conditional independence and graphical models. It also introduces b inomial ideals and some ideas from real algebraic geometry. When random variables are discrete or Gaussian, tools from computational algebraic geometry can be used to understand implications between conditional independence statements. This is accomplished by computing primary decompositions of conditional independence ideals. As examples the chapter presents in detail the graphical model of a four cycle and the intersection axiom, a certain implication of conditional independence statements. Another important problem in the area is to determine all constraints on a graphical model, for example, equations determined by trek separation. The full set of equality constraints can be determined by computing the models vanishing ideal. The chapter illustrates these techniques and ideas with examples from the literature and provides references for further reading.
Consider the classical supervised learning problem: we are given data $(y_i,{boldsymbol x}_i)$, $ile n$, with $y_i$ a response and ${boldsymbol x}_iin {mathcal X}$ a covariates vector, and try to learn a model $f:{mathcal X}to{mathbb R}$ to predict f uture responses. Random features methods map the covariates vector ${boldsymbol x}_i$ to a point ${boldsymbol phi}({boldsymbol x}_i)$ in a higher dimensional space ${mathbb R}^N$, via a random featurization map ${boldsymbol phi}$. We study the use of random features methods in conjunction with ridge regression in the feature space ${mathbb R}^N$. This can be viewed as a finite-dimensional approximation of kernel ridge regression (KRR), or as a stylized model for neural networks in the so called lazy training regime. We define a class of problems satisfying certain spectral conditions on the underlying kernels, and a hypercontractivity assumption on the associated eigenfunctions. These conditions are verified by classical high-dimensional examples. Under these conditions, we prove a sharp characterization of the error of random features ridge regression. In particular, we address two fundamental questions: $(1)$~What is the generalization error of KRR? $(2)$~How big $N$ should be for the random features approximation to achieve the same error as KRR? In this setting, we prove that KRR is well approximated by a projection onto the top $ell$ eigenfunctions of the kernel, where $ell$ depends on the sample size $n$. We show that the test error of random features ridge regression is dominated by its approximation error and is larger than the error of KRR as long as $Nle n^{1-delta}$ for some $delta>0$. We characterize this gap. For $Nge n^{1+delta}$, random features achieve the same error as the corresponding KRR, and further increasing $N$ does not lead to a significant change in test error.
We propose two types of Quantile Graphical Models (QGMs) --- Conditional Independence Quantile Graphical Models (CIQGMs) and Prediction Quantile Graphical Models (PQGMs). CIQGMs characterize the conditional independence of distributions by evaluating the distributional dependence structure at each quantile index. As such, CIQGMs can be used for validation of the graph structure in the causal graphical models (cite{pearl2009causality, robins1986new, heckman2015causal}). One main advantage of these models is that we can apply them to large collections of variables driven by non-Gaussian and non-separable shocks. PQGMs characterize the statistical dependencies through the graphs of the best linear predictors under asymmetric loss functions. PQGMs make weaker assumptions than CIQGMs as they allow for misspecification. Because of QGMs ability to handle large collections of variables and focus on specific parts of the distributions, we could apply them to quantify tail interdependence. The resulting tail risk network can be used for measuring systemic risk contributions that help make inroads in understanding international financial contagion and dependence structures of returns under downside market movements. We develop estimation and inference methods for QGMs focusing on the high-dimensional case, where the number of variables in the graph is large compared to the number of observations. For CIQGMs, these methods and results include valid simultaneous choices of penalty functions, uniform rates of convergence, and confidence regions that are simultaneously valid. We also derive analogous results for PQGMs, which include new results for penalized quantile regressions in high-dimensional settings to handle misspecification, many controls, and a continuum of additional conditioning events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا