ﻻ يوجد ملخص باللغة العربية
In the past few years, the Generative Adversarial Network (GAN) which proposed in 2014 has achieved great success. GAN has achieved many research results in the field of computer vision and natural language processing. Image steganography is dedicated to hiding secret messages in digital images, and has achieved the purpose of covert communication. Recently, research on image steganography has demonstrated great potential for using GAN and neural networks. In this paper we review different strategies for steganography such as cover modification, cover selection and cover synthesis by GANs, and discuss the characteristics of these methods as well as evaluation metrics and provide some possible future research directions in image steganography.
In this paper, a novel strategy of Secure Steganograpy based on Generative Adversarial Networks is proposed to generate suitable and secure covers for steganography. The proposed architecture has one generative network, and two discriminative network
Generative Adversarial Networks (GANs) currently achieve the state-of-the-art sound synthesis quality for pitched musical instruments using a 2-channel spectrogram representation consisting of log magnitude and instantaneous frequency (the IFSpectrog
A Previously traditional methods were sufficient to protect the information, since it is simplicity in the past does not need complicated methods but with the progress of information technology, it become easy to attack systems, and detection of encr
Adversarial examples are inevitable on the road of pervasive applications of deep neural networks (DNN). Imperceptible perturbations applied on natural samples can lead DNN-based classifiers to output wrong prediction with fair confidence score. It i
Recent improvements in generative adversarial visual synthesis incorporate real and fake image transformation in a self-supervised setting, leading to increased stability and perceptual fidelity. However, these approaches typically involve image augm