ﻻ يوجد ملخص باللغة العربية
We study the quantum phase transition from a Dirac spin liquid to an antiferromagnet driven by condensing monopoles with spin quantum numbers. We describe the transition in field theory by tuning a fermion interaction to condense a spin-Hall mass, which in turn allows the appropriate monopole operators to proliferate and confine the fermions. We compute various critical exponents at the quantum critical point (QCP), including the scaling dimensions of monopole operators by using the state-operator correspondence of conformal field theory. We find that the degeneracy of monopoles in QED3 is lifted and yields a non-trivial monopole hierarchy at the QCP. In particular, the lowest monopole dimension is found to be smaller than that of QED3 using a large $N_f$ expansion where $2N_f$ is the number of fermion flavors. For the minimal magnetic charge, this dimension is $0.39N_f$ at leading order. We also study the QCP between Dirac and chiral spin liquids, which allows us to test a conjectured duality to a bosonic CP$^1$ theory. Finally, we discuss the implications of our results for quantum magnets on the Kagome lattice.
Monopole operators are topological disorder operators in 2+1 dimensional compact gauge field theories appearing notably in quantum magnets with fractionalized excitations. For example, their proliferation in a spin-1/2 kagome Heisenberg antiferromagn
The QED$_3$-Gross-Neveu model is a (2+1)-dimensional U(1) gauge theory involving Dirac fermions and a critical real scalar field. This theory has recently been argued to represent a dual description of the deconfined quantum critical point between Ne
In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalised bosonic quasi-par
The coupling between fermionic matter and gauge fields plays a fundamental role in our understanding of nature, while at the same time posing a challenging problem for theoretical modeling. In this situation, controlled information can be gained by c
The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of great debate. We conducted 17-O single crystal NMR measurements o