ﻻ يوجد ملخص باللغة العربية
We prove a common generalization of two results, one on rainbow fractional matchings and one on rainbow sets in the intersection of two matroids: Given $d = r lceil k rceil - r + 1$ functions of size (=sum of values) $k$ that are all independent in each of $r$ given matroids, there exists a rainbow set of $supp(f_i)$, $i leq d$, supporting a function with the same properties.
This is a survey paper on rainbow sets (another name for ``choice functions). The main theme is the distinction between two types of choice functions: those having a large (in the sense of belonging to some specified filter, namely closed up set of s
Let $M$ be a 3-connected matroid and let $mathbb F$ be a field. Let $A$ be a matrix over $mathbb F$ representing $M$ and let $(G,mathcal B)$ be a biased graph representing $M$. We characterize the relationship between $A$ and $(G,mathcal B)$, settlin
We describe the structure of the monoid of natural-valued monotone functions on an arbitrary poset. For this monoid we provide a presentation, a characterization of prime elements, and a description of its convex hull. We also study the associated mo
We introduce delta-graphic matroids, which are matroids whose bases form graphic delta-matroids. The class of delta-graphic matroids contains graphic matroids as well as cographic matroids and is a proper subclass of the class of regular matroids. We
We construct minimal cellular resolutions of squarefree monomial ideals arising from hyperplane arrangements, matroids and oriented matroids. These are Stanley-Reisner ideals of complexes of independent sets, and of triangulations of Lawrence matroid