ﻻ يوجد ملخص باللغة العربية
Let $M$ be a 3-connected matroid and let $mathbb F$ be a field. Let $A$ be a matrix over $mathbb F$ representing $M$ and let $(G,mathcal B)$ be a biased graph representing $M$. We characterize the relationship between $A$ and $(G,mathcal B)$, settling four conjectures of Zaslavsky. We show that for each matrix representation $A$ and each biased graph representation $(G,mathcal B)$ of $M$, $A$ is projectively equivalent to a canonical matrix representation arising from $G$ as a gain graph over $mathbb F^+$ or $mathbb F^times$. Further, we show that the projective equivalence classes of matrix representations of $M$ are in one-to-one correspondence with the switching equivalence classes of gain graphs arising from $(G,mathcal B)$.
Given a 3-connected biased graph $Omega$ with a balancing vertex, and with frame matroid $F(Omega)$ nongraphic and 3-connected, we determine all biased graphs $Omega$ with $F(Omega) = F(Omega)$. As a consequence, we show that if $M$ is a 4-connected
The class of quasi-graphic matroids recently introduced by Geelen, Gerards, and Whittle generalises each of the classes of frame matroids and lifted-graphic matroids introduced earlier by Zaslavsky. For each biased graph $(G, mathcal B)$ Zaslavsky de
We introduce delta-graphic matroids, which are matroids whose bases form graphic delta-matroids. The class of delta-graphic matroids contains graphic matroids as well as cographic matroids and is a proper subclass of the class of regular matroids. We
For an abelian group $Gamma$, a $Gamma$-labelled graph is a graph whose vertices are labelled by elements of $Gamma$. We prove that a certain collection of edge sets of a $Gamma$-labelled graph forms a delta-matroid, which we call a $Gamma$-graphic d
A {em connectivity function} on a set $E$ is a function $lambda:2^Erightarrow mathbb R$ such that $lambda(emptyset)=0$, that $lambda(X)=lambda(E-X)$ for all $Xsubseteq E$, and that $lambda(Xcap Y)+lambda(Xcup Y)leq lambda(X)+lambda(Y)$ for all $X,Y s