ترغب بنشر مسار تعليمي؟ اضغط هنا

Flux-induced topological superconductivity in full-shell nanowires

148   0   0.0 ( 0 )
 نشر من قبل Charles Marcus
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

We consider a new model system supporting Majorana zero modes based on semiconductor nanowires with a full superconducting shell. We demonstrate that, in the presence of spin-orbit coupling in the semiconductor induced by a radial electric field, the winding of the superconducting order parameter leads to a topological phase supporting Majorana zero modes. The topological phase persists over a large range of chemical potentials and can be induced by a predictable and weak magnetic field piercing the cylinder. The system can be readily realized in semiconductor nanowires covered by a full superconducting shell, opening a pathway for realizing topological quantum computing proposals.
Finding a clear signature of topological superconductivity in transport experiments remains an outstanding challenge. In this work, we propose exploiting the unique properties of three-dimensional topological insulator nanowires to generate a normal- superconductor junction in the single-mode regime where an exactly quantized $2e^2/h$ zero-bias conductance can be observed over a wide range of realistic system parameters. This is achieved by inducing superconductivity in half of the wire, which can be tuned at will from trivial to topological with a parallel magnetic field, while a perpendicular field is used to gap out the normal part, except for two spatially separated chiral channels. The combination of chiral mode transport and perfect Andreev reflection makes the measurement robust to moderate disorder, and the quantization of conductance survives to much higher temperatures than in tunnel junction experiments. Our proposal may be understood as a variant of a Majorana interferometer which is easily realizable in experiments.
Among the different platforms to engineer Majorana fermions in one-dimensional topological superconductors, topological insulator nanowires remain a promising option. Threading an odd number of flux quanta through these wires induces an odd number of surface channels, which can then be gapped with proximity induced pairing. Because of the flux and depending on energetics, the phase of this surface pairing may or may not wind around the wire in the form of a vortex. Here we show that for wires with discrete rotational symmetry, this vortex is necessary to produce a fully gapped topological superconductor with localized Majorana end states. Without a vortex the proximitized wire remains gapless, and it is only if the symmetry is broken by disorder that a gap develops, which is much smaller than the one obtained with a vortex. These results are explained with the help of a continuum model and validated numerically with a tight binding model, and highlight the benefit of a vortex for reliable use of Majorana fermions in this platform.
Motivated by recent experiments searching for Majorana zero modes in tripartite semiconductor nanowires with epitaxial superconductor and ferromagnetic-insulator layers, we explore the emergence of topological superconductivity in such devices for pa radigmatic arrangements of the three constituents. Accounting for the competition between magnetism and superconductivity, we treat superconductivity self consistently and describe the electronic properties, including the superconducting and ferromagnetic proximity effects, within a direct wave-function approach. We conclude that the most viable mechanism for topological superconductivity relies on a superconductor-semiconductor-ferromagnet arrangement of the constituents, in which spin splitting and superconductivity are independently induced in the semiconductor by proximity and superconductivity is only weakly affected by the ferromagnetic insulator.
Coupling a normal metal wire to a superconductor induces an excitation gap in the normal metal. In the absence of disorder, the induced excitation gap is strongly suppressed by finite-size effects if the thickness of the superconductor is much smalle r than the thickness of the normal metal and the superconducting coherence length. We show that the presence of disorder, either in the bulk or at the exposed surface of the superconductor, significantly enhances the magnitude of the induced gap, such that it approaches the superconducting gap in the limit of strong disorder. We also discuss the shift of energy bands inside the normal-metal wire as a result of the coupling to the superconducting shell.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا