ﻻ يوجد ملخص باللغة العربية
We study the complexity of Boolean constraint satisfaction problems (CSPs) when the assignment must have Hamming weight in some congruence class modulo M, for various choices of the modulus M. Due to the known classification of tractable Boolean CSPs, this mainly reduces to the study of three cases: 2-SAT, HORN-SAT, and LIN-2 (linear equations mod 2). We classify the moduli M for which these respective problems are polynomial time solvable, and when they are not (assuming the ETH). Our study reveals that this modular constraint lends a surprising richness to these classic, well-studied problems, with interesting broader connections to complexity theory and coding theory. The HORN-SAT case is connected to the covering complexity of polynomials representing the NAND function mod M. The LIN-2 case is tied to the sparsity of polynomials representing the OR function mod M, which in turn has connections to modular weight distribution properties of linear codes and locally decodable codes. In both cases, the analysis of our algorithm as well as the hardness reduction rely on these polynomial representations, highlighting an interesting algebraic common ground between hard cases for our algorithms and the gadgets which show hardness. These new complexity measures of polynomial representations merit further study. The inspiration for our study comes from a recent work by Nagele, Sudakov, and Zenklusen on submodular minimization with a global congruence constraint. Our algorithm for HORN-SAT has strong similarities to their algorithm, and in particular identical kind of set systems arise in both cases. Our connection to polynomial representations leads to a simpler analysis of such set systems, and also sheds light on (but does not resolve) the complexity of submodular minimization with a congruency requirement modulo a composite M.
We give an efficient algorithm to strongly refute emph{semi-random} instances of all Boolean constraint satisfaction problems. The number of constraints required by our algorithm matches (up to polylogarithmic factors) the best-known bounds for effic
We consider the approximability of constraint satisfaction problems in the streaming setting. For every constraint satisfaction problem (CSP) on $n$ variables taking values in ${0,ldots,q-1}$, we prove that improving over the trivial approximability
We study the approximability of constraint satisfaction problems (CSPs) by linear programming (LP) relaxations. We show that for every CSP, the approximation obtained by a basic LP relaxation, is no weaker than the approximation obtained using relaxa
We study the problem of approximating the value of a Unique Game instance in the streaming model. A simple count of the number of constraints divided by $p$, the alphabet size of the Unique Game, gives a trivial $p$-approximation that can be computed
A Boolean constraint satisfaction problem (CSP), Max-CSP$(f)$, is a maximization problem specified by a constraint $f:{-1,1}^kto{0,1}$. An instance of the problem consists of $m$ constraint applications on $n$ Boolean variables, where each constraint