ترغب بنشر مسار تعليمي؟ اضغط هنا

Strongly refuting all semi-random Boolean CSPs

179   0   0.0 ( 0 )
 نشر من قبل Pravesh K Kothari
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We give an efficient algorithm to strongly refute emph{semi-random} instances of all Boolean constraint satisfaction problems. The number of constraints required by our algorithm matches (up to polylogarithmic factors) the best-known bounds for efficient refutation of fully random instances. Our main technical contribution is an algorithm to strongly refute semi-random instances of the Boolean $k$-XOR problem on $n$ variables that have $widetilde{O}(n^{k/2})$ constraints. (In a semi-random $k$-XOR instance, the equations can be arbitrary and only the right-hand sides are random.) One of our key insights is to identify a simple combinatorial property of random XOR instances that makes spectral refutation work. Our approach involves taking an instance that does not satisfy this property (i.e., is emph{not} pseudorandom) and reducing it to a partitioned collection of $2$-XOR instances. We analyze these subinstances using a carefully chosen quadratic form as a proxy, which in turn is bounded via a combination of spectral methods and semidefinite programming. The analysis of our spectral bounds relies only on an off-the-shelf matrix Bernstein inequality. Even for the purely random case, this leads to a shorter proof compared to the ones in the literature that rely on problem-specific trace-moment computations.



قيم البحث

اقرأ أيضاً

A Boolean constraint satisfaction problem (CSP), Max-CSP$(f)$, is a maximization problem specified by a constraint $f:{-1,1}^kto{0,1}$. An instance of the problem consists of $m$ constraint applications on $n$ Boolean variables, where each constraint application applies the constraint to $k$ literals chosen from the $n$ variables and their negations. The goal is to compute the maximum number of constraints that can be satisfied by a Boolean assignment to the $n$~variables. In the $(gamma,beta)$-approximation version of the problem for parameters $gamma geq beta in [0,1]$, the goal is to distinguish instances where at least $gamma$ fraction of the constraints can be satisfied from instances where at most $beta$ fraction of the constraints can be satisfied. In this work we consider the approximability of Max-CSP$(f)$ in the (dynamic) streaming setting, where constraints are inserted (and may also be deleted in the dynamic setting) one at a time. We completely characterize the approximability of all Boolean CSPs in the dynamic streaming setting. Specifically, given $f$, $gamma$ and $beta$ we show that either (1) the $(gamma,beta)$-approximation version of Max-CSP$(f)$ has a probabilistic dynamic streaming algorithm using $O(log n)$ space, or (2) for every $varepsilon > 0$ the $(gamma-varepsilon,beta+varepsilon)$-approximation version of Max-CSP$(f)$ requires $Omega(sqrt{n})$ space for probabilistic dynamic streaming algorithms. We also extend previously known results in the insertion-only setting to a wide variety of cases, and in particular the case of $k=2$ where we get a dichotomy and the case when the satisfying assignments of $f$ support a distribution on ${-1,1}^k$ with uniform marginals.
Random constraint satisfaction problems (CSPs) are known to exhibit threshold phenomena: given a uniformly random instance of a CSP with $n$ variables and $m$ clauses, there is a value of $m = Omega(n)$ beyond which the CSP will be unsatisfiable with high probability. Strong refutation is the problem of certifying that no variable assignment satisfies more than a constant fraction of clauses; this is the natural algorithmic problem in the unsatisfiable regime (when $m/n = omega(1)$). Intuitively, strong refutation should become easier as the clause density $m/n$ grows, because the contradictions introduced by the random clauses become more locally apparent. For CSPs such as $k$-SAT and $k$-XOR, there is a long-standing gap between the clause density at which efficient strong refutation algorithms are known, $m/n ge widetilde O(n^{k/2-1})$, and the clause density at which instances become unsatisfiable with high probability, $m/n = omega (1)$. In this paper, we give spectral and sum-of-squares algorithms for strongly refuting random $k$-XOR instances with clause density $m/n ge widetilde O(n^{(k/2-1)(1-delta)})$ in time $exp(widetilde O(n^{delta}))$ or in $widetilde O(n^{delta})$ rounds of the sum-of-squares hierarchy, for any $delta in [0,1)$ and any integer $k ge 3$. Our algorithms provide a smooth transition between the clause density at which polynomial-time algorithms are known at $delta = 0$, and brute-force refutation at the satisfiability threshold when $delta = 1$. We also leverage our $k$-XOR results to obtain strong refutation algorithms for SAT (or any other Boolean CSP) at similar clause densities. Our algorithms match the known sum-of-squares lower bounds due to Grigoriev and Schonebeck, up to logarithmic factors. Additionally, we extend our techniques to give new results for certifying upper bounds on the injective tensor norm of random tensors.
We study the approximability of constraint satisfaction problems (CSPs) by linear programming (LP) relaxations. We show that for every CSP, the approximation obtained by a basic LP relaxation, is no weaker than the approximation obtained using relaxa tions given by $Omegaleft(frac{log n}{log log n}right)$ levels of the Sherali-Adams hierarchy on instances of size $n$. It was proved by Chan et al. [FOCS 2013] that any polynomial size LP extended formulation is no stronger than relaxations obtained by a super-constant levels of the Sherali-Adams hierarchy.. Combining this with our result also implies that any polynomial size LP extended formulation is no stronger than the basic LP. Using our techniques, we also simplify and strengthen the result by Khot et al. [STOC 2014] on (strong) approximation resistance for LPs. They provided a necessary and sufficient condition under which $Omega(log log n)$ levels of the Sherali-Adams hierarchy cannot achieve an approximation better than a random assignment. We simplify their proof and strengthen the bound to $Omegaleft(frac{log n}{log log n}right)$ levels.
We study the problem of efficiently refuting the k-colorability of a graph, or equivalently certifying a lower bound on its chromatic number. We give formal evidence of average-case computational hardness for this problem in sparse random regular gra phs, showing optimality of a simple spectral certificate. This evidence takes the form of a computationally-quiet planting: we construct a distribution of d-regular graphs that has significantly smaller chromatic number than a typical regular graph drawn uniformly at random, while providing evidence that these two distributions are indistinguishable by a large class of algorithms. We generalize our results to the more general problem of certifying an upper bound on the maximum k-cut. This quiet planting is achieved by minimizing the effect of the planted structure (e.g. colorings or cuts) on the graph spectrum. Specifically, the planted structure corresponds exactly to eigenvectors of the adjacency matrix. This avoids the pushout effect of random matrix theory, and delays the point at which the planting becomes visible in the spectrum or local statistics. To illustrate this further, we give similar results for a Gaussian analogue of this problem: a quiet version of the spiked model, where we plant an eigenspace rather than adding a generic low-rank perturbation. Our evidence for computational hardness of distinguishing two distributions is based on three different heuristics: stability of belief propagation, the local statistics hierarchy, and the low-degree likelihood ratio. Of independent interest, our results include general-purpose bounds on the low-degree likelihood ratio for multi-spiked matrix models, and an improved low-degree analysis of the stochastic block model.
Promise Constraint Satisfaction Problems (PCSPs) are a generalization of Constraint Satisfaction Problems (CSPs) where each predicate has a strong and a weak form and given a CSP instance, the objective is to distinguish if the strong form can be sat isfied vs. even the weak form cannot be satisfied. Since their formal introduction by Austrin, Guruswami, and Haa stad, there has been a flurry of works on PCSPs [BBKO19,KO19,WZ20]. The key tool in studying PCSPs is the algebraic framework developed in the context of CSPs where the closure properties of the satisfying solutions known as the polymorphisms are analyzed. The polymorphisms of PCSPs are much richer than CSPs. In the Boolean case, we still do not know if dichotomy for PCSPs exists analogous to Schaefers dichotomy result for CSPs. In this paper, we study a special case of Boolean PCSPs, namely Boolean Ordered PCSPs where the Boolean PCSPs have the predicate $x leq y$. In the algebraic framework, this is the special case of Boolean PCSPs when the polymorphisms are monotone functions. We prove that Boolean Ordered PCSPs exhibit a computational dichotomy assuming the Rich 2-to-1 Conjecture [BKM21] which is a perfect completeness surrogate of the Unique Games Conjecture. Assuming the Rich 2-to-1 Conjecture, we prove that a Boolean Ordered PCSP can be solved in polynomial time if for every $epsilon>0$, it has polymorphisms where each coordinate has Shapley value at most $epsilon$, else it is NP-hard. The algorithmic part of our dichotomy is based on a structural lemma that Boolean monotone functions with each coordinate having low Shapley value have arbitrarily large threshold functions as minors. The hardness part proceeds by showing that the Shapley value is consistent under a uniformly random 2-to-1 minor. Of independent interest, we show that the Shapley value can be inconsistent under an adversarial 2-to-1 minor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا