ﻻ يوجد ملخص باللغة العربية
We study the problem of approximating the value of a Unique Game instance in the streaming model. A simple count of the number of constraints divided by $p$, the alphabet size of the Unique Game, gives a trivial $p$-approximation that can be computed in $O(log n)$ space. Meanwhile, with high probability, a sample of $tilde{O}(n)$ constraints suffices to estimate the optimal value to $(1+epsilon)$ accuracy. We prove that any single-pass streaming algorithm that achieves a $(p-epsilon)$-approximation requires $Omega_epsilon(sqrt{n})$ space. Our proof is via a reduction from lower bounds for a communication problem that is a $p$-ary variant of the Boolean Hidden Matching problem studied in the literature. Given the utility of Unique Games as a starting point for reduction to other optimization problems, our strong hardness for approximating Unique Games could lead to downemph{stream} hardness results for streaming approximability for other CSP-like problems.
These are the lecture notes for the DIMACS Tutorial Limits of Approximation Algorithms: PCPs and Unique Games held at the DIMACS Center, CoRE Building, Rutgers University on 20-21 July, 2009. This tutorial was jointly sponsored by the DIMACS Special
We consider the complexity properties of modern puzzle games, Hexiom, Cut the Rope and Back to Bed. The complexity of games plays an important role in the type of experience they provide to players. Back to Bed is shown to be PSPACE-Hard and the firs
We give a new algorithm for Unique Games which is based on purely {em spectral} techniques, in contrast to previous work in the area, which relies heavily on semidefinite programming (SDP). Given a highly satisfiable instance of Unique Games, our alg
A pseudo-deterministic algorithm is a (randomized) algorithm which, when run multiple times on the same input, with high probability outputs the same result on all executions. Classic streaming algorithms, such as those for finding heavy hitters, app
In this work, we show the first worst-case to average-case reduction for the classical $k$-SUM problem. A $k$-SUM instance is a collection of $m$ integers, and the goal of the $k$-SUM problem is to find a subset of $k$ elements that sums to $0$. In t