ترغب بنشر مسار تعليمي؟ اضغط هنا

A Naturally Light Dilaton and a Small Cosmological Constant

135   0   0.0 ( 0 )
 نشر من قبل Csaba Csaki
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a non-supersymmetric theory with a naturally light dilaton. It is based on a 5D holographic description of a conformal theory perturbed by a close-to-marginal operator of dimension 4-epsilon, which develops a condensate. As long as the dimension of the perturbing operator remains very close to marginal (even for large couplings) a stable minimum at hierarchically small scales is achieved, where the dilaton mass squared is suppressed by epsilon. At the same time the cosmological constant in this sector is also suppressed by epsilon, and thus parametrically smaller than in a broken SUSY theory. As a byproduct we also present an exact solution to the scalar-gravity system that can be interpreted as a new holographic realization of spontaneously broken conformal symmetry. Even though this metric deviates substantially from AdS space in the deep IR it still describes a non-linearly realized exactly conformal theory. We also display the effective potential for the dilaton for arbitrary holographic backgrounds.



قيم البحث

اقرأ أيضاً

We construct a vacuum of string theory in which the magnitude of the vacuum energy is $< 10^{-123}$ in Planck units. Regrettably, the sign of the vacuum energy is negative, and some supersymmetry remains unbroken.
Guided by the naturalness criterion for an exponentially small cosmological constant, we present a string theory motivated 4-dimensional $mathcal{N}=1$ non-linear supergravity model (or its linear version with a nilpotent superfield) with spontaneous supersymmetry breaking. The model encompasses the minimal supersymmetric standard model, the racetrack Kahler uplift, and the KKLT anti-$rm D3$-branes, and use the nilpotent superfield to project out the undesirable interaction terms as well as the unwanted degrees of freedom to end up with the standard model (not the supersymmetric version) of strong and electroweak interactions.
In the investigation and resolution of the cosmological constant problem the inclusion of the dynamics of quantum gravity can be a crucial step. In this work we suggest that the quantum constraints in a canonical theory of gravity can provide a way o f addressing the issue: we consider the case of two-dimensional quantum dilaton gravity non-minimally coupled to a U(1) gauge field, in the presence of an arbitrary number of massless scalar matter fields, intended also as an effective description of highly symmetrical higher-dimensional models. We are able to quantize the system non-perturbatively and obtain an expression for the cosmological constant Lambda in terms of the quantum physical states, in a generalization of the usual QFT approach. We discuss the role of the classical and quantum gravitational contributions to Lambda and present a partial spectrum of values for it.
We investigate the decay of metastable de Sitter, Minkowski and anti-de Sitter vacua catalyzed by a black hole and a cloud of strings. We apply the method to the creation of the four dimensional bubble universe in the five dimensional anti-de Sitter spacetime recently proposed by Banerjee, Danielsson, Dibitetto, Giri and Schillo. We study the bounce action for the creation and find that the bubble with very small cosmological constant, of order $Lambda^{(4)}/M^2_4 sim 10^{-120}$, is favored by the catalysis by assuming appropriate mass scales of the black hole and the cloud of strings to reproduce the present energy densities of matter and radiation in the bubble universe.
Based on the probability distributions of products of random variables, we propose a simple stringy mechanism that prefers the meta-stable vacua with a small cosmological constant. We state some relevant properties of the probability distributions of functions of random variables. We then illustrate the mechanism within the flux compactification models in Type IIB string theory. As a result of the stringy dynamics, we argue that the generic probability distribution for the meta-stable vacua typically peaks with a divergent behavior at the zero value of the cosmological constant. However, its suppression in the single modulus model studied here is modest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا