ﻻ يوجد ملخص باللغة العربية
We propose a combined mechanism to realize both winding inflation and de Sitter uplifts. We realize the necessary structure of competing terms in the scalar potential not via tuning the vacuum expectation values of the complex structure moduli, but by a hierarchy of the Gopakumar-Vafa invariants of the underlying Calabi-Yau threefold. To show that Calabi-Yau threefolds with the prescribed hierarchy actually exist, we explicitly create a database of all the genus $0$ Gopakumar-Vafa invariants up to total degree $10$ for all the complete intersection Calabi-Yaus up to Picard number $9$. As a side product, we also identify all the redundancies present in the CICY list, up to Picard number $13$. Both databases can be accessed at this link: https://www.desy.de/~westphal/GV_CICY_webpage/GVInvariants.html .
In the first part of this note we argue that ten dimensional consistency requirements in the form of a certain tadpole cancellation condition can be satisfied by KKLT type vacua of type IIB string theory. We explain that a new term of non-local natur
We propose a landscape of many axions, where the axion potential receives various contributions from shift symmetry breaking effects. We show that the existence of the axion with a super-Planckian decay constant is very common in the axion landscape
We present a new mechanism for slow-roll inflation based on higher dimensional supersymmetric gauge theory compactified to four dimensions with twisted (supersymmetry breaking) boundary conditions. These boundary conditions lead to a potential for di
We discuss models involving two scalar fields coupled to classical gravity that satisfy the general criteria: (i) the theory has no mass input parameters, (ii) classical scale symmetry is broken only through $-frac{1}{12}varsigma phi^2 R$ couplings w
We present a mechanism for realizing hybrid inflation using two axion fields with a purely non-perturbatively generated scalar potential. The structure of scalar potential is highly constrained by the discrete shift symmetries of the axions. We show