ﻻ يوجد ملخص باللغة العربية
Brownian motion with coordinate dependent damping and diffusivity is ubiquitous. Understanding equilibrium of a Brownian particle with coordinate dependent diffusion and damping is a contentious area. In this paper, we present an alternative approach based on already established methods to this problem. We solve for the equilibrium distribution of the over-damped dynamics using Kramers-Moyal expansion. We compare this with the over-damped limit of the generalized Maxwell-Boltzmann distribution. We show that the equipartition of energy helps recover the Stokes-Einstein relation at constant diffusivity and damping of the homogeneous space. However, we also show that, there exists no homogeneous limit of coordinate dependent diffusivity and damping with respect to the applicability of Stokes-Einstein relation when it does not hold locally. In the other scenario where the Stokes-Einstein relation holds locally, one needs to impose a restriction on the local maximum velocity of the Brownian particle to make the modified Maxwell-Boltzmann distribution coincide with the modified Boltzmann distribution in the over-damped limit.
We generalize to higher spatial dimensions the Stokes--Einstein relation (SER) and the leading correction to diffusivity in periodic systems, and validate them using numerical simulations. Using these results, we investigate the evolution of the SER
The Stokes-Einstein relation (SER) is one of the most robust and widely employed results from the theory of liquids. Yet sizable deviations can be observed for self-solvation, which cannot be explained by the standard hydrodynamic derivation. Here, w
We present Monte Carlo simulation results on the equilibrium relaxation of the two dimensional lattice Coulomb gas with fractional charges, which exhibits a close analogy to the primary relaxation of fragile supercooled liquids. Single particle and c
Protein conformational fluctuations are highly complex and exhibit long-term correlations. Here, molecular dynamics simulations of small proteins demonstrate that these conformational fluctuations directly affect the proteins instantaneous diffusivit
The effect of a change of noise amplitudes in overdamped diffusive systems is linked to their unperturbed behavior by means of a nonequilibrium fluctuation-response relation. This formula holds also for systems with state-independent nontrivial diffu