ﻻ يوجد ملخص باللغة العربية
Protein conformational fluctuations are highly complex and exhibit long-term correlations. Here, molecular dynamics simulations of small proteins demonstrate that these conformational fluctuations directly affect the proteins instantaneous diffusivity $D_I$. We find that the radius of gyration $R_g$ of the proteins exhibits $1/f$ fluctuations, that are synchronous with the fluctuations of $D_I$. Our analysis demonstrates the validity of the local Stokes-Einstein type relation $D_Ipropto1/(R_g + R_0)$, where $R_0sim0.3$ nm is assumed to be a hydration layer around the protein. From the analysis of different protein types with both strong and weak conformational fluctuations the validity of the Stokes-Einstein type relation appears to be a general property.
.Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of these models typically focus on the moments and the di
We study the extremal properties of a stochastic process $x_t$ defined by a Langevin equation $dot{x}_t=sqrt{2 D_0 V(B_t)},xi_t$, where $xi_t$ is a Gaussian white noise with zero mean, $D_0$ is a constant scale factor, and $V(B_t)$ is a stochastic di
Brownian motion with coordinate dependent damping and diffusivity is ubiquitous. Understanding equilibrium of a Brownian particle with coordinate dependent diffusion and damping is a contentious area. In this paper, we present an alternative approach
We study the universal thermodynamic properties of systems consisting of many coupled oscillators operating in the vicinity of a homogeneous oscillating instability. In the thermodynamic limit, the Hopf bifurcation is a dynamic critical point far fro
We perform simulations of a system containing simple model proteins and a polymer representing chromatin. We study the interplay between protein-protein and protein-chromatin interactions, and the resulting condensates which arise due to liquid-liqui