ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical processes involved in the EUV Surge Event of 09 May 2012

51   0   0.0 ( 0 )
 نشر من قبل Marcelo L\\'opez Fuentes
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study an EUV confined ejection observed on 09 May 2012 in active region (AR) NOAA 11476. For the analysis we use observations in multiple wavelengths (EUV, X-rays, H$alpha$, and magnetograms) from a variety of ground-based and space instruments. The magnetic configuration showed the presence of two rotating bipoles, with decreasing magnetic flux, within the following polarity of the AR. This evolution was present along some tens of hours before the studied event and continued even later. A minifilament with a length of $approx 30 arcsec$ lay along the photospheric inversion line of the largest bipole. The minifilament was observed to erupt accompanied by an M4.7 flare (SOL20120509T12:23:00). Consequently, dense material, as well as twist, was injected along closed loops in the form of a very broad ejection whose morphology resembles that of typical H$alpha$ surges. We conclude that the flare and eruption can be explained as due to two reconnection processes, one occurring below the erupting minifilament and another one above it. This second process injects the minifilament plasma within the reconnected closed loops linking the main AR polarities. Analyzing the magnetic topology using a force-free model of the coronal field, we identify the location of quasi-separatix layers (QSLs), where reconnection is prone to occur, and present a detailed interpretation of the chromospheric and coronal eruption observations. In particular, this event, contrary to what has been proposed in several models explaining surges and/or jets, is not originated by magnetic flux emergence but by magnetic flux cancellation accompanied by the rotation of the bipoles. In fact, the conjunction of these two processes, flux cancellation and bipole rotations, is at the origin of a series of events, homologous to the one we analyze in this article, that occurred in AR 11476 from 08 to 10 May 2012.


قيم البحث

اقرأ أيضاً

67 - Philip J. Armitage 2015
This review introduces physical processes in protoplanetary disks relevant to accretion and the initial stages of planet formation. After a brief overview of the observational context, I introduce the elementary theory of disk structure and evolution , review the gas-phase physics of angular momentum transport through turbulence and disk winds, and discuss possible origins for the episodic accretion observed in Young Stellar Objects. Turning to solids, I review the evolution of single particles under aerodynamic forces, and describe the conditions necessary for the development of collective gas-particle instabilities. Observations show that disks can exhibit pronounced large-scale structure, and I discuss the types of structures that may form from gas and particle interactions at ice lines, vortices and zonal flows, prior to the formation of large planetary bodies. I conclude with disk dispersal.
Since the launch of NASAs Solar Dynamics Observatory on 2010 February 11, the Extreme ultraviolet Variability Experiment (EVE) has observed numerous flares. One interesting feature observed by EVE is that a subset of flares exhibit an additional enha ncement of the 2-3 million K emission several hours after the flares soft X-ray emission. From the Atmospheric Imaging Assembly (AIA) images, we observe that this secondary emission, dubbed the EUV late phase, occurs in the same active region as the flare but not in the same coronal loops. Here, we examine the C8.8 flare that occurred on 2010 May 5 as a case study of EUV late phase flares. In addition to presenting detailed observations from both AIA and EVE, we develop a physical model of this flare and test it using the Enthalpy Based Thermal Evolution of Loops (EBTEL) model.
Context. The remote observations of solar flare ion acceleration are rather limited. There are theoretical predictions for signatures of ion acceleration in EUV line profiles. Previous tests involve observations of flares with no evidence for energet ic ions. Aims. We aim to examine a source flare of impulsive (or 3He-rich) solar energetic particle events with EUV line spectroscopy. Methods. We inspect all (90+) reported 3He-rich flares of previous solar cycle 23 and find only four (recurrent) jets in the field of view of SOHO CDS. The jet with the most suitable spatial and temporal coverage is analyzed in detail. Results. Two enhanced (non-thermal) line broadenings are observed in the cooler chromospheric / transition-region lines and they are localized near the site where the closed magnetic loops reconnect with the open magnetic field lines. Both enhanced broadenings are found in the sites with redshifts in the lines, surrounded by the region with blueshifts. One enhanced line broadening is associated with a small flare without energetic particle signatures while another occurs just after the particle acceleration signatures of the main flare terminated. Conclusions. The observed excess broadening appears to be not directly related to the energetic ion production and motions. Further investigations where the critical impulsive phase of the flare is covered are required, ideally with high-resolution spectrometers intentionally pointed to the 3He-rich solar energetic particle source.
In this study, we investigate an extreme ultraviolet (EUV) wave event on 2010 February 11, which occurred as a limb event from the Earth viewpoint and a disk event from the STEREO--B viewpoint. We use the data obtained by the Atmospheric Imaging Asse mbly (AIA) aboard the Solar Dynamics Observatory (SDO) in various EUV channels. The EUV wave event was launched by a partial prominence eruption. Similar to some EUV wave events in previous works, this EUV wave event contains a faster wave with a speed of $sim$445$pm$6 km s$^{-1}$, which we call coronal Moreton wave, and a slower wave with a speed of $sim$298$pm$5 km s$^{-1}$, which we call EIT wave. The coronal Moreton wave is identified as a fast-mode wave and the EIT wave is identified as an apparent propagation due to successive field-line stretching. We also observe a stationary front associated with the fast mode EUV wave. This stationary front is explained as mode conversion from the coronal Moreton wave to a slow-mode wave near a streamer.
On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white light a large-scale dome-shaped expanding coronal transient with perfectly connected off-limb and on-disk signatures. Veronig et al. (2010, ApJL 716, 57) concluded that the dome was formed by a weak shock wave. We have revealed two EUV components, one of which corresponded to this transient. All of its properties found from EUV, white light, and a metric type II burst match expectations for a freely expanding coronal shock wave including correspondence to the fast-mode speed distribution, while the transient sweeping over the solar surface had a speed typical of EUV waves. The shock wave was presumably excited by an abrupt filament eruption. Both a weak shock approximation and a power-law fit match kinematics of the transient near the Sun. Moreover, the power-law fit matches expansion of the CME leading edge up to 24 solar radii. The second, quasi-stationary EUV component near the dimming was presumably associated with a stretched CME structure; no indications of opening magnetic fields have been detected far from the eruption region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا