ﻻ يوجد ملخص باللغة العربية
In this study, we investigate an extreme ultraviolet (EUV) wave event on 2010 February 11, which occurred as a limb event from the Earth viewpoint and a disk event from the STEREO--B viewpoint. We use the data obtained by the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) in various EUV channels. The EUV wave event was launched by a partial prominence eruption. Similar to some EUV wave events in previous works, this EUV wave event contains a faster wave with a speed of $sim$445$pm$6 km s$^{-1}$, which we call coronal Moreton wave, and a slower wave with a speed of $sim$298$pm$5 km s$^{-1}$, which we call EIT wave. The coronal Moreton wave is identified as a fast-mode wave and the EIT wave is identified as an apparent propagation due to successive field-line stretching. We also observe a stationary front associated with the fast mode EUV wave. This stationary front is explained as mode conversion from the coronal Moreton wave to a slow-mode wave near a streamer.
EUV (Extreme-Ultraviolet) waves are globally propagating disturbances that have been observed since the era of the SoHO/EIT instrument. Although the kinematics of the wave front and secondary wave components have been widely studied, there is not muc
Context. The remote observations of solar flare ion acceleration are rather limited. There are theoretical predictions for signatures of ion acceleration in EUV line profiles. Previous tests involve observations of flares with no evidence for energet
On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white light a large-scale dome-shaped expanding coronal transient with perfectly connected off-limb and on-disk signatures. Veronig et al. (2010, ApJL 716, 57) concluded that the
We present first observations of a dome-shaped large-scale EUV coronal wave, recorded by the EUVI instrument onboard STEREO-B on January 17, 2010. The main arguments that the observed structure is the wave dome (and not the CME) are: a) the spherical
The EUV (100-912 {AA}) is a spectral region notoriously difficult to observe due to attenuation by neutral hydrogen gas in the interstellar medium. Despite this, hundreds to thousands of nearby stars of different spectral types and magnetic activity