ترغب بنشر مسار تعليمي؟ اضغط هنا

The Origin of the EUV Late Phase: A Case Study of the C8.8 Flare on 2010 May 5

40   0   0.0 ( 0 )
 نشر من قبل Rachel Hock
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the launch of NASAs Solar Dynamics Observatory on 2010 February 11, the Extreme ultraviolet Variability Experiment (EVE) has observed numerous flares. One interesting feature observed by EVE is that a subset of flares exhibit an additional enhancement of the 2-3 million K emission several hours after the flares soft X-ray emission. From the Atmospheric Imaging Assembly (AIA) images, we observe that this secondary emission, dubbed the EUV late phase, occurs in the same active region as the flare but not in the same coronal loops. Here, we examine the C8.8 flare that occurred on 2010 May 5 as a case study of EUV late phase flares. In addition to presenting detailed observations from both AIA and EVE, we develop a physical model of this flare and test it using the Enthalpy Based Thermal Evolution of Loops (EBTEL) model.

قيم البحث

اقرأ أيضاً

The fan-spine magnetic topology is believed to be responsible for many curious features in solar explosive events. A spine field line links distinct flux domains, but direct observation of such feature has been rare. Here we report a unique event obs erved by the Solar Dynamic Observatory where a set of hot coronal loops (over 10 MK) connected to a quasi-circular chromospheric ribbon at one end and a remote brightening at the other. Magnetic field extrapolation suggests these loops are partly tracer of the evolving spine field line. Continuous slipping- and null-point-type reconnections were likely at work, energizing the loop plasma and transferring magnetic flux within and across the fan quasi-separatrix layer. We argue that the initial reconnection is of the breakout type, which then transitioned to a more violent flare reconnection with an eruption from the fan dome. Significant magnetic field changes are expected and indeed ensued. This event also features an extreme-ultraviolet (EUV) late phase, i.e. a delayed secondary emission peak in warm EUV lines (about 2-7 MK). We show that this peak comes from the cooling of large post-reconnection loops beside and above the compact fan, a direct product of eruption in such topological settings. The long cooling time of the large arcades contributes to the long delay; additional heating may also be required. Our result demonstrates the critical nature of cross-scale magnetic coupling - topological change in a sub-system may lead to explosions on a much larger scale.
On May 30th, 2017 at about 21h 09m 17s UTC a green bright fireball crossed the sky of north-eastern Italy. The fireball path was observed from some all-sky cameras starting from a mean altitude of $81.1 pm 0.2$ km (Lat. $44.369^{circ} pm 0.002^{circ} $ N; Long. $11.859^{circ} pm 0.002^{circ}$ E) and extinct at $23.3 pm 0.2$ km (Lat. $45.246^{circ} pm 0.002^{circ}$ N; Long. $12.046^{circ} pm 0.002^{circ}$ E), between the Italian cities of Venice and Padua. In this paper, on the basis of simple physical models, we will compute the atmospheric trajectory, analize the meteoroid atmospheric dynamics, the dark flight phase (with the strewn field) and compute the best heliocentric orbit of the progenitor body. Search for meteorites on the ground has not produced any results so far.
Solar flares observed in the 200-400 GHz radio domain may exhibit a slowly varying and time-extended component which follows a short (few minutes) impulsive phase and which lasts for a few tens of minutes to more than one hour. The few examples discu ssed in the literature indicate that such long-lasting submillimeter emission is most likely thermal bremsstrahlung. We present a detailed analysis of the time-extended phase of the 2003 October 27 (M6.7) flare, combining 1-345 GHz total-flux radio measurements with X-ray, EUV, and H{alpha} observations. We find that the time-extended radio emission is, as expected, radiated by thermal bremsstrahlung. Up to 230 GHz, it is entirely produced in the corona by hot and cool materials at 7-16 MK and 1-3 MK, respectively. At 345 GHz, there is an additional contribution from chromospheric material at a few 10^4 K. These results, which may also apply to other millimeter-submillimeter radio events, are not consistent with the expectations from standard semi-empirical models of the chromosphere and transition region during flares, which predict observable radio emission from the chromosphere at all frequencies where the corona is transparent.
We study an EUV confined ejection observed on 09 May 2012 in active region (AR) NOAA 11476. For the analysis we use observations in multiple wavelengths (EUV, X-rays, H$alpha$, and magnetograms) from a variety of ground-based and space instruments. T he magnetic configuration showed the presence of two rotating bipoles, with decreasing magnetic flux, within the following polarity of the AR. This evolution was present along some tens of hours before the studied event and continued even later. A minifilament with a length of $approx 30 arcsec$ lay along the photospheric inversion line of the largest bipole. The minifilament was observed to erupt accompanied by an M4.7 flare (SOL20120509T12:23:00). Consequently, dense material, as well as twist, was injected along closed loops in the form of a very broad ejection whose morphology resembles that of typical H$alpha$ surges. We conclude that the flare and eruption can be explained as due to two reconnection processes, one occurring below the erupting minifilament and another one above it. This second process injects the minifilament plasma within the reconnected closed loops linking the main AR polarities. Analyzing the magnetic topology using a force-free model of the coronal field, we identify the location of quasi-separatix layers (QSLs), where reconnection is prone to occur, and present a detailed interpretation of the chromospheric and coronal eruption observations. In particular, this event, contrary to what has been proposed in several models explaining surges and/or jets, is not originated by magnetic flux emergence but by magnetic flux cancellation accompanied by the rotation of the bipoles. In fact, the conjunction of these two processes, flux cancellation and bipole rotations, is at the origin of a series of events, homologous to the one we analyze in this article, that occurred in AR 11476 from 08 to 10 May 2012.
One of the defining characteristics of a solar flare is the impulsive formation of very high temperature plasma. The properties of the thermal emission are not well understood, however, and the analysis of solar flare observations is often predicated on the assumption that the flare plasma is isothermal. The EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO) provides spectrally resolved observations of emission lines that span a wide range of temperatures (e.g., Fe XV-Fe XXIV) and allow for thermal flare plasma to be studied in detail. In this paper we describe a method for computing the differential emission measure distribution in a flare using EVE observations and apply it to several representative events. We find that in all phases of the flare the differential emission measure distribution is broad. Comparisons of EVE spectra with calculations based on parameters derived from the GOES soft X-ray fluxes indicate that the isothermal approximation is generally a poor representation of the thermal structure of a flare.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا