ﻻ يوجد ملخص باللغة العربية
We present fore-optics and calibration unit design of Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS). DOTIFS fore-optics is designed to modify the focal ratio of the light and to match its plate scale to the physical size of Integral Field Units (IFUs). The fore-optics also delivers a telecentric beam to the IFUs on the telescope focal plane. There is a calibration unit part of which is combined with the fore-optics to have a light and compact system. We use Xenon-arc lamp as a continuum source and Krypton/Mercury-Neon lamps as wavelength calibration sources. Fore-optics and calibration unit shares two optical lenses to maintain compactness of the overall subsystem. Here we present optical and opto-mechanical design of the calibration unit and fore-optics as well as calibration scheme of DOTIFS.
SOXS is a new spectrograph for the New Technology Telescope (NTT), optimized for transient and variable objects, covering a wide wavelength range from 350 to 2000 nm. SOXS is equipped with a calibration unit that will be used to remove the instrument
Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS) is a new multi-Integral Field Unit (IFU) instrument, planned to be mounted on the 3.6m Devasthal optical telescope in Nainital, India. It has eight identical, fiber-fed spectrographs to
We present in this paper the design and characterisation of a new sub-system of the VLTI 2nd generation instrument GRAVITY: the Calibration Unit. The Calibration Unit provides all functions to test and calibrate the beam combiner instrument: it creat
The Large High Altitude Air Shower Observatory project is proposed to study high energy gamma ray astronomy ( 40 GeV-1 PeV ) and cosmic ray physics ( 20 TeV-1 EeV ). The wide field of view Cherenkov telescope array, as a component of the LHAASO proje
The High-Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is under construction 4100 meters above sea level at Sierra Negra, Mexico. We describe the design and cabling of the detector, the characterization of the photomultipliers, and the timing