ترغب بنشر مسار تعليمي؟ اضغط هنا

The HAWC Gamma-Ray Observatory: Design, Calibration, and Operation

127   0   0.0 ( 0 )
 نشر من قبل Segev BenZvi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The High-Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is under construction 4100 meters above sea level at Sierra Negra, Mexico. We describe the design and cabling of the detector, the characterization of the photomultipliers, and the timing calibration system. We also outline a next-generation detector based on the water Cherenkov technique.

قيم البحث

اقرأ أيضاً

The HAWC collaboration has recently completed the construction of a gamma-ray observatory at an altitude of 4100 meters on the slope of the Sierra Negra volcano in the state of Puebla, Mexico. In order to achieve an optimal angular resolution, energy reconstruction, and cosmic-ray background suppression for the air showers observed by HAWC, it is crucial to obtain good timing and charge calibrations of the photosensors in the detector. The HAWC calibration is based on a laser system which is able to deliver short light pulses to all the tanks in the array. The light intensity can range over 7 orders of magnitude, broad enough to cover all the dynamic range of the PMT readout electronics. In this contribution we will present the HAWC calibration system, together with the methods used to calibrate the detector.
A wide range of data formats and proprietary software have traditionally been used in gamma-ray astronomy, usually developed for a single specific mission or experiment. However, in recent years there has been an increasing effort towards making astr onomical data open and easily accessible. Within the gamma-ray community this has translated to the creation of a common data format across different gamma-ray observatories: the gamma-astro-data-format (GADF). Based on a similar premise, open-source analysis packages, such as Gammapy, are being developed and aim to provide a single, robust tool which suits the needs of many experiments at once. In this contribution we show that data from the High-Altitude Water Cherenkov (HAWC) observatory can be made compatible with the GADF and present the first GADF-based production of event lists and instrument response functions for a ground-based wide-field instrument. We use these data products to reproduce with excellent agreement the published HAWC Crab spectrum using Gammapy. Having a common data format and analysis tools facilitates joint analysis between different experiments and effective data sharing. This will be especially important for next-generation instruments, such as the proposed Southern Wide-field Gamma-ray Observatory (SWGO) and the planned Cherenkov Telescope Array (CTA).
92 - Andrew J. Smith 2015
The High-Altitude Water Cherenkov (HAWC) Observatory was completed and began full opera- tion on March 20, 2015. The detector consists of an array of 300 water tanks, each containing 200 ktons of purified water and instrumented with 4 PMTs. Located a t an elevation of 4100m a.s.l. near the Sierra Negra volcano in central Mexico, HAWC has a threshold for gamma-ray detection well below 1 TeV and a sensitivity to TeV-scale gamma-ray sources an order of magnitude better than previous air-shower arrays. The detector operates 24 hours/day and observes the overhead sky (2 sr), making it an ideal survey instrument. We describe the configuration of HAWC with an emphasis on how the design was optimized, describe the data acquired, reconstructed and an- alyzed. Finally, we will demonstrate the sensitivity of the detector using the observation of the Crab. This paper serves as a detailed technical description of the foundations of the numerous analyses presented at this meeting by members of the HAWC collaboration.
VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-showe r array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.
We present the first catalog of TeV gamma-ray sources realized with the recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a 1-year survey sensit ivity of ~5-10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma ray energies between hundreds GeV and tens of TeV. HAWC is located in Mexico at a latitude of 19 degree North and was completed in March 2015. Here, we present the 2HWC catalog, which is the result of the first source search realized with the complete HAWC detector. Realized with 507 days of data and represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected contamination of 0.5 due to background fluctuation. Out of these sources, 16 are more than one degree away from any previously reported TeV source. The source list, including the position measurement, spectrum measurement, and uncertainties, is reported. Seven of the detected sources may be associated with pulsar wind nebulae, two with supernova remnants, two with blazars, and the remaining 23 have no firm identification yet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا