ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometry and optics calibration of WFCTA prototype telescopes using star light

100   0   0.0 ( 0 )
 نشر من قبل Lingling Ma
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. L. Ma




اسأل ChatGPT حول البحث

The Large High Altitude Air Shower Observatory project is proposed to study high energy gamma ray astronomy ( 40 GeV-1 PeV ) and cosmic ray physics ( 20 TeV-1 EeV ). The wide field of view Cherenkov telescope array, as a component of the LHAASO project, will be used to study energy spectrum and compositions of cosmic ray by measuring the total Cherenkov light generated by air showers and shower maximum depth. Two prototype telescopes have been in operation since 2008. The pointing accuracy of each telescope is crucial to the direction reconstruction of the primary particles. On the other hand the primary energy reconstruction relies on the shape of the Cherenkov image on the camera and the unrecorded photons due to the imperfect connections between photomultiplier tubes. UV bright stars are used as point-like objects to calibrate the pointing and to study the optical properties of the camera, the spot size and the fractions of unrecorded photons in the insensitive areas of the camera.



قيم البحث

اقرأ أيضاً

We present a novel method to measure precisely the relative spectral response of the fluorescence telescopes of the Pierre Auger Observatory. We used a portable light source based on a xenon flasher and a monochromator to measure the relative spectra l efficiencies of eight telescopes in steps of 5 nm from 280 nm to 440 nm. Each point in a scan had approximately 2 nm FWHM out of the monochromator. Different sets of telescopes in the observatory have different optical components, and the eight telescopes measured represent two each of the four combinations of components represented in the observatory. We made an end-to-end measurement of the response from different combinations of optical components, and the monochromator setup allowed for more precise and complete measurements than our previous multi-wavelength calibrations. We find an overall uncertainty in the calibration of the spectral response of most of the telescopes of 1.5% for all wavelengths; the six oldest telescopes have larger overall uncertainties of about 2.2%. We also report changes in physics measureables due to the change in calibration, which are generally small.
Transition Radiation (TR) plays an important role in particle identification in high-energy physics and its characteristics provide a feasible method of energy calibration in the energy range up to 10 TeV, which is of interest for dark matter searche s in cosmic rays. In a Transition Radiation Detector (TRD), the TR signal is superimposed onto the ionization energy loss signal induced by incident charged particles. In order to make the TR signal stand out from the background of ionization energy loss in a significant way, we optimized both the radiators and the detector. We have designed a new prototype of regular radiator optimized for a maximal TR photon yield, combined with the Side-On TRD which is supposed to improve the detection efficiency of TR. We started a test beam experiment with the Side-On TRD at Conseil Europ{e}en pour la Recherche Nucl{e}aire (CERN), and found that the experimental data is consistent with the simulation results.
In this work, we describe the optical properties of the single photoelectron (SPE) calibration system designed for NectarCAM, a camera proposed for the Medium Sized Telescopes (MST) of the Cherenkov Telescope Array (CTA). One of the goals of the SPE system, as integral part of the NectarCAM camera, consists in measuring with high accuracy the gain of its photo-detection chain. The SPE system is based on a white painted screen where light pulses are injected through a fishtail light guide from a dedicated flasher. The screen - placed 15 mm away from the focal plane - is mounted on an XY motorization that allows movements over all the camera plane. This allows in-situ measurements of the SPE spectra via a complete scan of the 1855 photo-multiplier tubes (PMTs) of NectarCAM. This calibration process will enable the reduction of the systematic uncertainties on the energy reconstruction of $gamma$-rays coming from distant astronomical sources and detected by CTA.
64 - Y. Ohtani , A. Berti , D. Depaoli 2021
The Cherenkov Telescope Array (CTA) will be the next generation gamma-ray observatory, which will consist of three kinds of telescopes of different sizes. Among those, the Large Size Telescope (LST) will be the most sensitive in the low energy range starting from 20 GeV. The prototype LST (LST-1) proposed for CTA was inaugurated in October 2018 in the northern hemisphere site, La Palma (Spain), and is currently in its commissioning phase. MAGIC is a system of two gamma-ray Cherenkov telescopes of the current generation, located approximately 100 m away from LST-1, that have been operating in stereoscopic mode since 2009. Since LST-1 and MAGIC can observe the same air shower events, we can compare the brightness of showers, estimated energies of gamma rays, and other parameters event by event, which can be used to cross-calibrate the telescopes. Ultimately, by performing combined analyses of the events triggering the three telescopes, we can reconstruct the shower geometry more accurately, leading to better energy and angular resolutions, and a better discrimination of the background showers initiated by cosmic rays. For that purpose, as part of the commissioning of LST-1, we performed joint observations of established gamma-ray sources with LST-1 and MAGIC. Also, we have developed Monte Carlo simulations for such joint observations and an analysis pipeline which finds event coincidence in the offline analysis based on their timestamps. In this work, we present the first detection of an astronomical source, the Crab Nebula, with combined observation of LST-1 and MAGIC. Moreover, we show results of the inter-telescope cross-calibration obtained using Crab Nebula data taken during joint observations with LST-1 and MAGIC.
The General Antiparticle Spectrometer (GAPS) experiment is a novel approach for the detection of cosmic ray antiparticles. A prototype GAPS experiment (pGAPS) was successfully flown on a high-altitude balloon in June of 2012. The goals of the pGAPS e xperiment were: to test the operation of lithium drifted silicon (Si(Li)) detectors at balloon altitudes, to validate the thermal model and cooling concept needed for engineering of a full-size GAPS instrument, and to characterize cosmic ray and X-ray backgrounds. The instrument was launched from the Japan Aerospace Exploration Agencys (JAXA) Taiki Aerospace Research Field in Hokkaido, Japan. The flight lasted a total of 6 hours, with over 3 hours at float altitude (~33 km). Over one million cosmic ray triggers were recorded and all flight goals were met or exceeded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا