ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction

234   0   0.0 ( 0 )
 نشر من قبل Tasrief Surungan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi {it et al.} [ Phys. Rev. B{bf 73}, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan {it et. al.} [Journal of Physics: Conference Series 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.



قيم البحث

اقرأ أيضاً

The effect of randomness on critical behavior is a crucial subject in condensed matter physics due to the the presence of impurity in any real material. We presently probe the critical behaviour of the antiferromagnetic (AF) Ising model on rewired sq uare lattices with random connectivity. An extra link is randomly added to each site of the square lattice to connect the site to one of its next-nearest neighbours, thus having different number of connections (links). Average number of links (ANOL) $kappa$ is fractional, varied from 2 to 3, where $kappa = 2$ associated with the native square lattice. The rewired lattices possess abundance of triangular units in which spins are frustrated due to AF interaction. The system is studied by using Monte Carlo method with Replica Exchange algorithm. Some physical quantities of interests were calculated, such as the specific heat, the staggered magnetization and the spin glass order parameter (Edward-Anderson parameter). We investigate the role played by the randomness in affecting the existing phase transition and its interplay with frustration to possibly bring any spin glass (SG) properties. We observed the low temperature magnetic ordered phase (Neel phase) preserved up to certain value of $kappa$ and no indication of SG phase for any value of $kappa$.
The locations of multicritical points on many hierarchical lattices are numerically investigated by the renormalization group analysis. The results are compared with an analytical conjecture derived by using the duality, the gauge symmetry and the re plica method. We find that the conjecture does not give the exact answer but leads to locations slightly away from the numerically reliable data. We propose an improved conjecture to give more precise predictions of the multicritical points than the conventional one. This improvement is inspired by a new point of view coming from renormalization group and succeeds in deriving very consistent answers with many numerical data.
Randomness and frustration are considered to be the key ingredients for the existence of spin glass (SG) phase. In a canonical system, these ingredients are realized by the random mixture of ferromagnetic (FM) and antiferromagnetic (AF) couplings. Th e study by Bartolozzi {it et al.} [Phys. Rev. B{bf 73}, 224419 (2006)] who observed the presence of SG phase on the AF Ising model on scale free network (SFN) is stimulating. It is a new type of SG system where randomness and frustration are not caused by the presence of FM and AF couplings. To further elaborate this type of system, here we study Heisenberg model on AF SFN and search for the SG phase. The canonical SG Heisenberg model is not observed in $d$-dimensional regular lattices for ($d leq 3$). We can make an analogy for the connectivity density ($m$) of SFN with the dimensionality of the regular lattice. It should be plausible to find the critical value of $m$ for the existence of SG behaviour, analogous to the lower critical dimension ($d_l$) for the canonical SG systems. Here we study system with $m=2,3,4$ and $5$. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter. We observed SG phase for each value of $m$ and estimated its corersponding critical temperature.
We use Monte Carlo simulations to study the one-dimensional long-range diluted Heisenberg spin glass with interactions that fall as a power, sigma, of the distance. Varying the power is argued to be equivalent to varying the space dimension of a shor t-range model. We are therefore able to study both the mean-field and non-mean-field regimes. For one value of sigma, in the non-mean-field regime, we find evidence that the chiral glass transition temperature may be somewhat higher than the spin glass transition temperature. For the other values of sigma we see no evidence for this.
We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study larger sizes, 48x48x48, than have been attempted before at a spin glass phase transition. A finite-size scaling analysis indicates tha t the data is compatible with the most economical scenario: a common transition temperature for spins and chiralities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا