ﻻ يوجد ملخص باللغة العربية
We study critical behavior of the diluted 2D Ising model in the presence of disorder correlations which decay algebraically with distance as $sim r^{-a}$. Mapping the problem onto 2D Dirac fermions with correlated disorder we calculate the critical properties using renormalization group up to two-loop order. We show that beside the Gaussian fixed point the flow equations have a non trivial fixed point which is stable for $0.995<a<2$ and is characterized by the correlation length exponent $ u= 2/a + O((2-a)^3)$. Using bosonization, we also calculate the averaged square of the spin-spin correlation function and find the corresponding critical exponent $eta_2=1/2-(2-a)/4+O((2-a)^2)$.
We use large-scale Monte Carlo simulations to test the Weinrib-Halperin criterion that predicts new universality classes in the presence of sufficiently slowly decaying power-law-correlated quenched disorder. While new universality classes are reason
The standard two-dimensional Ising spin glass does not exhibit an ordered phase at finite temperature. Here, we investigate whether long-range correlated bonds change this behavior. The bonds are drawn from a Gaussian distribution with a two-point co
We analyze a controversial question about the universality class of the three-dimensional Ising model with long-range-correlated disorder. Whereas both analytical and numerical studies performed so far support an extended Harris criterion (A. Weinrib
For the 2D Ising model, we analyzed dependences of thermodynamic characteristics on number of spins by means of computer simulations. We compared experimental data obtained using the Fisher-Kasteleyn algorithm on a square lattice with $N=l{times}l$ s
The interplay of correlated spatial modulation and symmetry breaking leads to quantum critical phenomena intermediate between those of the clean and randomly disordered cases. By performing a detailed analytic and numerical case study of the quasi-pe