ﻻ يوجد ملخص باللغة العربية
We describe an archival project using Cycle 0 data from the Atacama Large Millimeter/submilleter Array to survey the CO/CN line ratio in 17 nearby galaxies. CN is an interesting molecule that traces dense gas exposed to ultraviolet radiation and its N=1-0 lines can be observed simultaneously with the CO J=1-0 line. We identify 8 galaxies with distances < 200 Mpc for which both lines are detected. Signal-to-noise matched CO/CN ratios range from as low as 7 to as high as 65, while ratios using the total detected flux range from 20 to 140. Spatial variations greater than a factor of 3 are seen in several galaxies. These line ratio changes are likely due to changes in the [CN]/[H2] abundance ratio and/or the CN excitation. Additional measurements of the warm gas pressure and the CN excitation should help to distinguish between these two possibilities. 3 of the 4 active galactic nuclei in our sample show CO/CN line ratios that are roughly a factor of 2-3 larger than those seen in starburst-dominated regions, which may be in conflict with models of molecular abundances in X-ray dominated regions.
Both the CO(2-1) and CO(1-0) lines are used to trace the mass of molecular gas in galaxies. Translating the molecular gas mass estimates between studies using different lines requires a good understanding of the behaviour of the CO(2-1)-to-CO(1-0) ra
While molecular gas mass is usually derived from $^{12}$CO($J$=1-0) - the most fundamental line to explore molecular gas - it is often derived from $^{12}$CO($J$=2-1) assuming a constant $^{12}$CO($J$=2-1)/$^{12}$CO($J$=1-0) line ratio ($R_{2/1}$). W
We study the r31=LCO(3-2)/LCO(1-0) luminosity line ratio in a sample of nearby (z < 0.05) galaxies: 25 star-forming galaxies (SFGs) from the xCOLD GASS survey, 36 hard X-ray selected AGN host galaxies from BASS and 37 infrared luminous galaxies from
Observations of the molecular gas in galaxies are vital to understanding the evolution and star-forming histories of galaxies. However, galaxies with molecular gas maps of their whole discs having sufficient resolution to distinguish galactic structu
We present PHANGS-ALMA, the first survey to map CO J=2-1 line emission at ~1 ~ 100pc spatial resolution from a representative sample of 90 nearby (d<~20 Mpc) galaxies that lie on or near the z=0 main sequence of star-forming galaxies. CO line emissio