ﻻ يوجد ملخص باللغة العربية
The halo nuclei $^6$He and $^8$He are described in a consistent way in a microscopic multiconfiguration model, the refined resonating group method. The ground state properties have been calculated, and momentum distributions of fragments and neutrons have been determined in a simple reaction scenario, taking into account final-state interactions. The correlation of neutrons and fragments are investigated.
With the binding energies and configurations determined experimentally, the root-mean-square radii are calculated for a number of single-particle states by numerically solving the Sch{o}rdinger equations. By studying the relations between the radii a
Universality of short range correlations has been investigated both in coordinate and in momentum space, by means of one-and two-body densities and momentum distributions. In this contribution we discuss one- and two-body momentum distributions acros
Nucleon momentum distributions at various densities and isospin-asymmetries for nuclear matter are investigated systematically within the extended Bruecker-Hartree-Fock approach.The shapes of the normalized momentum distributions varying with $k/k_{F
It is known that nuclear deformation plays an important role in inducing the halo structure in neutron-rich nuclei by mixing several angular momentum components. While previous theoretical studies on this problem in the literature assume axially symm
Realistic NN interactions and many-body approaches have been used to calculate ground-state properties of nuclei with A=3, 4, 12, 16, 40, with particular emphasis on various kinds of momentum distributions. It is shown that at proper values of the re